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Abstract 
Background:   Pediatric low-grade gliomas (pLGGs) have heterogeneous clinical presentations, and given the mor-
bidity of treatment, some patients receive observation with magnetic resonance (MR). The natural histories of 
untreated pLGGs remain understudied. We leveraged deep learning-based volumetrics to analyze longitudinal 
growth trajectories and progression risk factors for untreated pLGGs.
Methods:   We conducted a pooled, retrospective study of radiographically diagnosed pLGG patients from two 
institutions diagnosed between 1992 and 2020 who were surveilled for at least 1 year post-diagnosis. Tumor seg-
mentation was applied to longitudinal T2-weighted MR to calculate 3D tumor volumes. We assessed volume tra-
jectories, disease progression, and associated risk factors using Cox-Hazards regression, survival analysis, and 
time-series forecasting with autoregressive integrated moving average (ARIMA). Patients were categorized based 
on volumetric changes into progression (≥25%), regression (≤−25%), or stability.
Results:   Of 99 patients (970 scans; median follow-up: 7.0 years; median diagnosis age: 12.0 years), 55 (55.5%) had 
tumors that volumetrically progressed, 28 (28.3%) remained stable, and 16 (16.2%) regressed. 42 (42.4%) patients 
initiated treatment. Risk factors associated with progression included infancy/preschool age, cortical location, and 
female sex (p ≤ 0.05 for each). Most progressions occurred within five years of diagnosis (80.0%), most commonly 
in school-aged children (7-13 years old). Time-series forecasting predicted future tumor volume with a mean abso-
lute error of 2.04 cm3.
Conclusion:   Deep learning enables systematic, longitudinal, pLGG growth tracking and characterization of pa-
tients on surveillance, yielding insights into untreated tumor trajectories and progression risk. This pipeline is 
useful at population-level to study growth trends and at patient-level to guide personalized management.

Key Points

•	 Deep learning enables longitudinal volumetric analysis of untreated, surveilled pLGG 
patients

•	 55.5% of tumors progressed, 28.3% were stable, 16.2% regressed over 7-years median 
follow-up

•	 Pipeline developed for longitudinal volumetric tracking applicable to various cancers

Deep learning volumetrics reveal distinct clinical 
trajectories for pediatric low-grade gliomas under 
surveillance: A multicenter study  
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Pediatric low-grade gliomas (pLGGs) are the most 
common pediatric brain tumors, constituting up to 40% of 
tumors in children.1–5 They are less aggressive than their 
high-grade counterparts6,7 and heterogeneous in their clin-
ical presentation, location, histology, genomics, and nat-
ural history.1,2,5,8,9 Given the long survivorship horizon of 
patients with pLGGs and the morbidity associated with 
aggressive therapies, clinical management is complex, 
balancing preservation of quality of life with the pursuit 
of disease control.10–12 While some pLGGs will require sur-
gery and, sometimes, combined modality therapy,13 others 
are found incidentally, present with minimal symptoms, or 
located in areas that preclude safe resection. For these pa-
tients, upfront surveillance is often pursued with periodic 
magnetic resonance (MR). Some of these patients may 
never require treatment, while others, sometimes soon 
after diagnosis, will develop growing tumors and/or symp-
toms requiring intervention,14 which may include surgery, 
radiation, chemotherapy, or targeted agents.15–20

While it is felt that initial surveillance in many of these 
patients is safe, the natural histories of these tumors have 
never been systematically studied, leaving several open 
questions regarding how pLGGs change longitudinally, 
and who will ultimately progress and require therapy. A 
major barrier to longitudinal analysis is that pediatric brain 
tumors are not quantitatively annotated and analyzed in 
routine clinical practice, largely due to resource, time, and 
expertise constraints.21–23 Accordingly, there have been 
only a few studies of longitudinal volumetric trajectories 
for pLGGs to date.24

In recent years, imaging-based deep learning (DL)25,26 
has demonstrated the ability to accurately segment and 
calculate 3D brain tumor volumetrics,27,28 including in pe-
diatric low-grade gliomas.29,30 Building upon the work in,29 
we sought to evaluate the validated DL segmentation tool 
in a large, multicenter cohort of untreated, clinically sus-
pected pLGGs under MR surveillance.

We hypothesized that the application of DL segmenta-
tion algorithms to a multicenter, longitudinal pLGG surveil-
lance cohort would enable a systematic study of natural 
histories of surveilled tumors, reveal distinct phenotypes, 
and discover risk factors for progression. We demonstrate 
the potential for DL to enable practical, longitudinal, tumor 
volumetric tracking and analysis for individual patients 
under surveillance and at scale. Finally, we investigate the 
potential for statistical modeling of volumetric trajectories 

to predict future growth dynamics of tumors to better in-
form clinical management.

MATERIALS AND METHODS

Study Design and Datasets

This study was conducted in accordance with the 
Declaration of Helsinki guidelines31 and after the 
Institutional Review Board (IRB)’s approval. Waiver of con-
sent was obtained from IRB prior to research initiation 
due to use of public datasets and minimal risk of this ret-
rospective study. We report our results in accordance with 
the Checklist for Artificial Intelligence in Medical Imaging 
(CLAIM) guidelines.32 The study includes patients with ra-
diographically suspected and clinically diagnosed pLGG 
diagnosed between 1992 and 2020 who underwent initial 
MR surveillance for at least one year prior to biopsy or 
treatment pooled from two institutional datasets: Dana-
Faber Cancer Institute/Boston Children’s Hospital (DF/BCH) 
and the Children’s Brain Tumor Network (CBTN). All patient 
imaging was collected from diagnosis up until progression, 
treatment receipt, or last clinical follow-up, whichever came 
first. Patients with optic gliomas were excluded due to their 
exclusion from training data of the auto-segmentation al-
gorithm, as were those with neurofibromatosis syndrome 
due to expected differences in natural histories compared 
to traditional pLGGs. The inclusion rationale can be found 
in Supplemental A.1. Radiographic diagnosis of pLGG was 
based on established T2-weighted MRI characteristics in-
cluding well-circumscribed hyperintense lesions, absence 
of significant mass effect or invasive features, anatomic lo-
cation consistent with pLGG, and slow or absent growth 
on serial imaging prior to inclusion.

Imaging Quality Control

All T2-weighted MR imaging data available was converted 
from native DICOM to NifTI format and underwent manual 
review jointly by a trained research fellow and board-
certified radiation oncologist (B.H.K.) to assess the validity 
and quality (i.e. artifact, incorrect body part, wrong se-
quence) of T2W sequences prior to algorithm implementa-
tion. Following review, patients were excluded if they had 

Importance of the Study

This is the first study to integrate deep learning 
volumetrics, longitudinal imaging analysis, and time-
series forecasting analysis to systematically investigate 
the natural histories of pediatric low-grade gliomas 
(pLGGs). By leveraging a validated deep learning seg-
mentation algorithm, the research enables comprehen-
sive volumetric analysis of pLGGs under surveillance, 
uncovering distinct tumor phenotypes and their as-
sociated clinical risk factors. The study’s approach, 

combining various statistical and machine learning 
techniques, enhances our understanding of pLGG pro-
gression patterns and 3D volume-based predictive cap-
abilities. The study provides new insights into pLGG 
growth dynamics and yields a modular software pipe-
line applicable to various longitudinal segmentation 
models, to enable generation of patient-level volumetric 
tracking to guide tailored surveillance and management 
strategies.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
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less than three MR scans to facilitate longitudinal trend 
analyses (See Supplemental A.1 for further cohort selec-
tion details).

Clinical risk factors such as tumor location, tumor his-
tology, symptoms at diagnosis, and treatment details were 
abstracted by trained clinical research coordinators. To facil-
itate mutational subtype analyses, tumor BRAF mutational 
status was inferred radiographically from a BRAF muta-
tional status DL prediction algorithm, developed, and val-
idated in prior work.33 For the inference, each longitudinal 
image was processed through a 3D image pipeline and the 

average prediction was assigned as the BRAF mutational 
status. Statistical tests were performed to verify significant 
differences between CBTN and DF/BCH datasets and to de-
termine whether they could be pooled reasonably. MRI ac-
quisition details can be found in Supplemental A.2.

DL Pipeline

A multistep pipeline was developed for the study (Figure 
1A). The pipeline, in full, is published open source for the 
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Figure 1.  Study design overview (A) separated into its two main steps, deep learning (DL) Volumetrics and Trajectory Analysis. Moreover, (B–G) 
show the individual, detailed pipeline modules. Across the entire figure the same color coding is utilized: developed processes are marked in 
blue, input data in green, intermediate results in orange, and final outputs in red. Data Curation (B) is conducted as the first step in deep learning 
(DL) Volumetrics, including a manual scan review to assess the correct sequences and the quality of clinical features. The selected T2W images 
are preprocessed in (C) and then segmented through the validated pLGG auto-segmentation algorithm. The output of the segmentation algorithm 
consists of 3D binary masks used in the Longitudinal Volumetric Analysis module (D) to extract the volumes, plot the volume trajectories over time 
for each patient, and create a time-series database. The second step, Trajectory Analysis, is comprised of the Longitudinal Classification Analysis 
(E), which classifies patients based on their trajectories and investigates the progression status over time, the Survival & Risk Analysis (F), which 
assesses clinical risk factors and survival probabilities, and the Statistical Forecasting (F), which performs volumetric and progression predic-
tions through ARIMA and GARCH models.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
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scientific and clinical communities under (https://github.
com/jc-cp/mri-longitudinal-analysis).

DL VolumetricsFollowing data curation and quality review 
(Figure 1B), T2-weighted images underwent preprocessing 
(Figure 1C), including bias field correction with the 
Simple-ITK package,34 voxel resizing to isotropic resolu-
tion (1 × 1 × 1mm), image co-registration (to an unbiased 
standard MR imaging template of brain volume for pedi-
atric data in the 4.5 to 18.5y age range from NIH35), and 
skull stripping via the HD-BET package.36

An nnUNet-based 3D tumor auto-segmentation model, 
previously developed, externally validated, and clinically 
benchmarked for pLGGs29 was applied to all images and 
outputs corresponding 3D tumor segmentations longitudi-
nally. All segmentations were reviewed by a board-certified 
radiation oncologist (B.H.K.) and cases with failed segmen-
tations or without visible tumor were removed from the 
analysis (Supplemental A.1, second Q&A).

The obtained segmentations were used in the 
Longitudinal Volumetric Analysis (Figure 1D) to extract the 
tumor volumes in mm3, which were subsequently plotted 
over time (patient age at scan date) for each patient to re-
veal volumetric tumor trajectories, in absolute terms and 
normalized to initial tumor volume. The output also in-
cluded a time-series dataset for each patient, containing 
tumor volume V, volume change between scans (ΔV = V1—
V2, where V2 is the volume at the later timepoint than V1), 
and volume change rate (rate = ∆V

∆t , where Δt is the time 
difference). Additionally, a moving average smoothing 
technique was applied to each trajectory.

Volumetric Trajectory AnalysisThe extracted patient-
based time-series data were merged with individual 
clinical data, which contained information about pa-
tient age and sex, tumor location, symptomatic presen-
tation, and later received treatment if that was the case 
(Figure 1E). This enabled tumor trajectory categorization 
as progressors, stables, or regressors, according to two 
endpoints, volumetric progression, and composite pro-
gression. Volumetric progression was defined as a 25% 
or more volumetric increase at any point, and volumetric 
regression as a volume decrease of 25% or more, con-
sistent with 2D RAPNO criteria37 and 3D RAPNO recom-
mendations.24 Patients with volume changes within, but 
never exceeding, these thresholds were considered stable. 
Composite progression was assigned when a patient had 
either volumetric progression and/or received tumor-
directed treatment. The longitudinal volumetric and com-
posite progression statuses were assessed from the time 
since diagnosis. Intra-patient tumor variability from scan-
to-scan was also evaluated using the coefficient of vari-
ation (CoV), as follows: CV = σ

µ , where σ is the standard 
deviation and μ the mean of the volumes over the course 
of a tumor’s trajectory.

Progression Risk Factors and ForecastingClinical risk 
factors for progression were investigated with univariable 
and multivariable proportional Cox hazards models. 
Baseline variables like age at diagnosis, tumor location, 

tumor baseline volume, and patient sex were investi-
gated for association with volumetric and composite pro-
gression. Additionally, BRAF mutational status (wildtype, 
fusion, or V600E) was inferred for all patients based on a 
previously validated, imaging-based mutational status 
prediction tool.33 The time elapsed between diagnosis and 
composite progression, and between a smaller volume 
change (increase of ≥ 10%) and volumetric progression, 
were also analyzed. Composite progression-free sur-
vival (PFS; from initial scan date) was evaluated with the 
Kaplan–Meier survival method and compared across clin-
ical variables with log-rank tests (Figure 1F) to account 
for censoring. The survival curves were collated with the 
survival and hazard estimates from the multivariate Cox-
regression for completeness. Finally, we analyzed the mu-
tational status of tumors that were ultimately resected, as 
available.

We applied predictive forecasting modeling of volu-
metric trajectories to determine if past tumor volumetrics 
could accurately predict future states. A hybrid statistical 
time-series algorithm combining autoregressive inte-
grated moving average (ARIMA)38 from the statsmodel 
package39 and generalized autoregressive conditional 
heteroskedasticity (GARCH)40 form the arch package41 were 
evaluated to predict future volumetric changes. Each volu-
metric trajectory extracted from the MRI scans was inter-
polated and separated into two segments. The first 80% of 
each trajectory was used to fit ARIMA and ARIMA + GARCH 
models. The last 20% of the trajectory was used for valida-
tion of those fittings. Both models were evaluated in the 
validation segment through different error and model se-
lection metrics such as MSE, RMSE, MAE, AIC, BIC, and 
HQIC. Finally, both methods were used to perform out-of-
the-curve forecasts, which indicated the mean direction 
and confidence of future volume change per trajectory. 
Performance of both models was compared in validation 
fitting and out of the curve predictions.

Statistical AnalysisCohort compatibility for a pooled anal-
ysis was assessed through several statistical tests. For 
categorical variables, Fisher’s exact test was used to com-
pare the proportions between the cohorts if both cohorts 
had binary categories. If either cohort had more than two 
categories, the Chi-squared test was used to compare the 
distributions between the cohorts. For continuous vari-
ables, if both cohorts passed the normality assumption (as-
sessed using the Shapiro–Wilk test), the independent t-test 
was used to compare the means between the cohorts. If 
either cohort failed the normality assumption, the Mann–
Whitney U test was used to compare the distributions be-
tween the cohorts. Statistical analyses were conducted 
using the SciPy software package.42 A p-value < 0.05 was 
considered significant (Table 1).

For risk factor association, continuous variables were 
scaled by removing the mean and scaling to unit vari-
ance (later marked with (+) in Figure 4A). After evaluating 
the variables in the univariate model, the variance infla-
tion factor was investigated to assess multicollinearity 
among the independent variables. Statistically signif-
icant differences between the age groups were calcu-
lated through a Kruskal–Wallis H-test, while the post hoc 

https://github.com/jc-cp/mri-longitudinal-analysis
https://github.com/jc-cp/mri-longitudinal-analysis
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
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Table 1.  The cohort is comprised of 99 patients surveilled post-diagnosis and before treatment initiation. We considered the longitudinal variables 
of age and volume, and baseline clinical risk factors such as sex, tumor location, symptomatic presentation, BRAF mutational status (which was 
radiographically inferred) and the received treatment (which is the eventual treatment after at least 1-year surveillance). For all statistical analyses, a 
two-sided p-value < 0.05 was considered statistically significant. *More information on the concrete mutational status for the subset of patients who 
ultimately underwent surgery can be found in Supplemental A.6.

Category Boston Children’s Hospital (BCH) Children’s Brain Tumor Network (CBTN) Pooled dataset P-values

Cohort (n)

Patients 56 43 99

Scans 504 466 970

Median / avg. per patient 7.0/ 9.0 7.0/ 10.8 7.0/ 9.8

Clinical follow-up

Median, years (range) 7.0 (1.0-19.0) 6.0 (1.0-17.0) 7.2 (1.0-19.5) .745

Median time between 
scans, months (range)

4.14 (0.03-110.29) 3.35 (0.03-98.88) 3.68 (0.03-110.29) .225

Tumor volume .096

Volume median, cm3 
(range)

3.27 (0.03-59.28) 5.11 (0.33-39.36) 4.18 (0.03-59.28) .101

Normalized volume me-
dian, cm3 (range)

1.00 (0.03-7.48) 1.09 (0.10-21.16) 1.01 (0.03-21.16) .321

Baseline volume median, 
cm3 (range)

3.44 (0.04-59.28) 4.42 (0.55-25.99) 3.91 (0.04-59.28) .221

Age .318

Median, years (range) 11.9 (1.08-28.92) 12.1 (0.50-28.01) 12.0 (0.50-28.92) .659

Median at diagnosis, years 
(range)

7.6 (1.08-19.05) 7.0 (0.50-16.91) 7.5 (0.50-19.05) .040

Age group at diagnosis, n (%)

Infant [0-2y] 4 (7.14%) 9 (20.93%) 13 (13.13%) .048

Preschool [3-6y] 7 (12.50%) 11 (25.58%) 18 (18.18%)

School Age [7-13y] 29 (51.78%) 17 (39.53%) 46(46.46%)

Adolescent [14-18y] 14 (25.00%) 6 (13.95%) 20 (20.20%)

Young Adult [18 + y] 2 (3.57%) 0 (00.00%) 2 (2.02%)

Sex, n (%)

Female 26 (46.42%) 19 (44.18%) 54 (54.5%) .842

Male 30 (53.57%) 24 (55.81%) 45 (45.5%)

Location, n (%)

Basal ganglia / Thalamus 10 (17.85%) 5 (11.63%) 15 (15.15%) .465

Cerebellum 8 (14.28%) 11 (25.58%) 19 (19.19%)

Cortical 18 (32.14%) 10 (23.25%) 28 (28.28%)

Midline 19 (33.92%) 15 (34.88%) 34 (34.34%)

Other 1 (1.78%) 2 (4.65%) 3 (3.03%)

Presentation, n (%)
Asymptomatic  
(Incidentally found)

7 (12.50%) 17 (39.53%) 24 (24.24%) .004

Symptomatic 49 (87.50%) 26 (60.47%) 75 (75.75%)
BRAF status, n (%)*
Wildtype 38 (67.85%) 24 (55.81%) 62 (62.62%) .046
V600E 7 (12.5%) 14 (32.55%) 21 (21.21%)
Fusion 11 (19.64%) 5 (11.62%) 16 (16.16%)

Received treatment, n (%)
Yes 27 (48.21%) 15 (34.88%) 42 (42.42%) .221
No 29 (51.87%) 28 (65.11%) 57 (57.57%)

Treatment type, n (%)
Surgery only 22 (39.28%) 8 (18.60%) 30 (30.30%) .071
Chemotherapy only – 2 (4.65%) 2 (2.02%)
Radiation only – – -
Surgery + chemo. 3 (5.35%) 4 (9.30%) 7 (7.07%)

Surgery + radiation – 1 (2.32%) 1 (1.01%)

Chemo. + radiation – – –

No treatment at all 29 (51.78%) 28 (65.11%) 57 (57.57%)

Surgery + radia-
tion + chemo.

2 (3.57%) – 2 (2.02%)
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Dunn’s test specified that all groups differ from each other. 
A p-value < 0.05 was considered significant. *BRAF muta-
tional status was inferred via a previously-validated deep 
learning algorithm for the purposes of this study.

RESULTS

Patient and Tumor Characteristics

We identified 99 patients (n = 56 DF/BCH; n = 43 CBTN) 
with 970 unique MR scans (median 7 scans per patient, 
Supplemental A.1) who met eligibility criteria and passed the 
quality review for the study (Supplemental A.1). Median im-
aging and clinical follow-up were 7.2 years (range: 1.0-19.5) 
(Table 1, Supplemental A.1) with a median time interval be-
tween scans of 3.68 months (range: 0.03-110.29 months) 
(Supplemental A.1). The median tumor volume at diagnosis 
(baseline) was 3.91cm3 (range: 0.04-59.28.). Patient and 
tumor characteristics were similar between the cohorts, ex-
cept for median and grouping age at diagnosis, symptomatic 
presentation, and inferred BRAF mutational status (p < 0.05 
for each; Table 1). Midline location comprises brainstem-
related, ventricular, meningeal, and suprasellar tumors.

Volumetric Trajectories and Patterns for 
surveilled pLGGs

Of all patients, 55 (55.5%) had volumetric tumor progres-
sion, 28 (28.3%) had stable tumors, and 16 (16.2%) had 
tumor regression (Figure 2A.1 and C.1). For these three 
classes, the median normalized volume change per scan 
was 0.145cm3 (5.65%), 0.001cm3 (< 0.01%), and −0.077cm3 
(-2.69%), respectively. In total 42 patients (42.4%) initiated 
treatment (Figure 2A.2 and C.1), out of which 95.2% un-
derwent surgery. No patients died under surveillance. Out 
of the patients who had volumetric progression (n = 55), 
43.6% (n = 24) underwent treatment, and out of the pa-
tients who did not volumetrically progress (n = 44), 40.9% 
(n = 18) underwent treatment (Figure 2C.2). A total of 73 pa-
tients (73.7%) progressed considering the composite end-
point (i.e. via volumetrics or receipt of treatment) (Figure 
2A.3 and C.1). The DL pipeline enabled generation of 
patient-level volumetric trajectories, highlighting distinct 
natural histories and tumor phenotypes like the described 
progressors (Figure 2B.1) and regressors (Figure 2B.2), 
but also including 14 patients (14.14%%) who had tumors 
that initially progressed and then regressed, i.e. a “waxing-
waning” phenotype (Figure 2B.3).

Of 55 patients with volumetric progression, 5 (9.09%) 
progressed during infancy (ages 0-2), 10 (18.18%) during 
preschool ages (ages 3-6), 28 (50.90%) progressed during 
school ages (ages 7-13 years), 10 (18.18%%) during adoles-
cence (ages 14-18), and 2 (3.63%) during young adulthood 
(age >=18) (Figure 3A.1). The oldest age at progression 
was 21 years. Most patients progressed within five years 
of diagnosis (44 patients, 80.0%), and 20 patients (36.36%) 
progressed within the first year of diagnosis (Figure 3A.2). 
Patterns were similar for composite progression. (Figure 
3A.3-4). The progression status stratified by tumor location 
showed midline and cortical tumors having the highest 
amount of progressors (Supplemental A.3). The median 

time to volumetric progression was 1.1 years (mean and 
std. dev.: 2.16 ± 2.1y), whereas for composite progression, 
it was 1.5 years (mean and std. dev.: 2.5y ± 2.8y) (Figure 
4B). For tumors that ultimately progressed volumetrically, 
median time from 10% volume increase to 25% volume 
increase was 0.38 years (mean and std. dev.: 0.86y ± 0.91y).

Tumor volume change from scan to scan was generally 
low across the cohort, with only a few cases showing high 
variability (CoV > 0.7) with a mean coefficient of variation 
of 0.353 (std. dev. ± 0.250) and a rightward skew in the dis-
tribution (Figure 3B). Tumor volume variability was highest 
in Infants and Preschool patients (ages 0-2 and 2-6, respec-
tively), with the median CoV generally decreasing over the 
temporal ordered age groups (Infants: 0510, Preschool: 
0.525, School Age: 0.350, Adolescents: 0.264, and Young 
Adults: 0.486, p < 0.001 and H-Statistic = 151.88) (Figure 
3B). Differences between groups were all p < 0.05 except 
for Young Adults who present p > 0.05 compared to all 
groups except vs Adolescents.

Risk Factors for Progression & Time to Event

On univariable Cox regression, all variables besides the 
adolescent age group and inferred BRAF Fusion muta-
tional status had significant associations with composite 
progression (p < 0.05 for each, Figure 4A). No variable 
exceeded a variance inflation factor of 1.5, suggesting no 
multicollinearity between variables. On multivariable anal-
ysis, factors associated with composite progression were 
younger age at diagnosis (infancy HR: 38.22, p < 0.01 and 
preschool ages HR: 8.71, p < 0.01, respectively), cortical 
tumor location (HR: 2.37, p < 0.01, respectively), and female 
sex (HR: 1.74, p < 0.01). Factors associated with lower risk 
of progression were older age at diagnosis (adolescence 
HR: 0.22, p < 0.01, and young adulthood HR: 0.26, p < 0.01), 
inferred BRAF V600E and inferred BRAF Fusion mutational 
status (HR: 0.49, p < 0.01, and HR: 0.39, p < 0.01, respec-
tively), and baseline tumor volume modeled as a contin-
uous variable (HR: 0.67, p < 0.01). The multivariable model 
showed an internal discriminatory performance of C-index 
0.735 (95% CI: 0.716 to 0.754) in predicting composite pro-
gression. Similar trends were found for the volumetric pro-
gression endpoint (Supplemental A.5). Additional hazard 
and derived survival curves from Cox-regression and a 
Kaplan–Meier estimator are in Supplemental A.4 and A.5.

The median time to volumetric progression was 1.09 
years (mean and std. dev.: 2.06y ± 2.09y), whereas for com-
posite progression it was 1.49 years (mean and std. dev.: 
2.53y ± 2.84y) (Figure 4 B). For tumors that ultimately pro-
gressed volumetrically, median time from 10% volume 
increase to 25% volume increase was 0.38 years (mean 
and std. dev.: 0.86y ± 0.91y).

For the BCH patients who ultimately underwent surgery 
(n = 27), 21 (77.7%) had genomic data available via next 
generation sequencing or targeted FISH assays. Of these, 
NF1 alterations were most prevalent (n = 6, 28.57%), fol-
lowed by BRAF aberrations including V600E mutations 
(n = 3, 14.28%), fusions (n = 3, 14.28%), duplications (n = 2, 
9.52%), and one case with concurrent BRAF V600E and 
NF1 mutations (4.76%), while FGFR1 and IDH1 mutations 
each occurred in two cases (9.52% each). The remaining 
cases (n = 2, 9.52%) were BRAF wildtype, without other 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
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http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
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identified driver mutation (Supplemental A.6). For CBTN 
patients, the mutational status was gathered for 23 out of 
the 43 total patients. NF1 alterations were most prevalent 
(n = 6, 28.08%) although the patients hadn’t been clini-
cally diagnosed with NF1 before, followed by BRAF Fusion 
and BRAF V600E mutations (each n = 5, 11.62%). There 
were 4 (17.39%) BRAF wildtype, 2 (4.65%) BRAF V600E 
with CDKN2A/B alterations and 1 (2.32%) case of FGFR1. 
Notably, NF1 alterations were the most prevalent molec-
ular finding in surgically treated patients from both cohorts 
(28.57% BCH, 28.08% CBTN), despite clinical exclusion of 
NF syndrome. This suggests potential germline or somatic 
NF1 alterations in patients without sufficient clinical mani-
festations for syndrome diagnosis. Limited sample size 
precludes definitive conclusions.

Volumetric Forecasting Analysis

For volumetric forecasting, all individual trajectories were 
interpolated before applying the time-series models (Figure 
5A). ARIMA marginally demonstrated better performance in 
forecasting volume changes during rolling validation over 
all trajectories in the cohort, considering traditional error 
metrics (winning 64.6% of cases, Wilcoxon p < 0.01) and 
information criteria assessments (Wilcoxon p < 0.01). The 
ARIMA + GARCH model showed superior practical utility 
with a mean absolute error of 2.04cm³ (std. dev. ± 59.6cm3), 
compared to ARIMA’s 2.80cm³ (std. dev. ± 92.7cm3), repre-
senting a 27.1% improvement, although both models do 
not fully capture some outliers (Figure 5B). Systematic bias 
analysis revealed that both models tend to underpredict 
volumes during validation, with ARIMA + GARCH showing 
less systematic bias (mean difference: 1.06cm³, 95% 
agreement limits: -115.8 to 118.0cm³) compared to ARIMA 
(mean difference: 2.69cm³, 95% agreement limits: -179.0 
to 184.4cm³), suggesting more consistent predictions. 
McNemar’s test revealed no significant pattern in model 
superiority (p > 0.05). Both models demonstrated high re-
liability, with 96.0% and 94.6% of predictions within 0.5 
cm³ for ARIMA and ARIMA + GARCH, respectively. In terms 
of forecast uncertainty, ARIMA + GARCH produced more 
controlled CIs, with final widths of 0.85 ± 2.34 cm³ com-
pared to ARIMA’s 2.48 ± 8.74 cm³, indicating higher predic-
tion precision in out-of-curve forecasting (Figure 5C). For 
forecasting absolute volume changes, both models pre-
dicted similar mean magnitudes (ARIMA: 0.39 ± 2.40cm³; 
ARIMA + GARCH: 0.41 ± 2.42cm³), with percentage changes 
of 8.2% (± 65.1%) and 5.6% (± 39.7%) respectively. Using 
again a ± 25% threshold on volume change forecasting, 
both models showed strong agreement, predominantly 
predicting volume progression in 62.6% of cases, with sta-
bility and regression in 29.3% and 8.1% of cases, respec-
tively. Additional information on the model comparison, 
validation fitting and forecasting evaluation can be found in 
Supplemental A.7.

Discussion

Pediatric low-grade gliomas are heterogeneous in nat-
ural history and clinical presentation, leading to complex 

management. Some patients elect for upfront surveil-
lance due to the morbidity associated with treatment, 
especially in the setting if patients are not symptomatic, 
but the clinical trajectories of these tumors have been un-
clear. Here, we present the first systematic, longitudinal 
volumetric analysis of pLGGs that were managed with 
upfront surveillance, enabled by the use of an AI tumor 
segmentation tool specialized for pLGG. Furthermore, we 
develop a scan-to-analysis pipeline that includes statis-
tical modeling to track and predict tumor progression and 
make this publicly available for the oncologic community. 
Levering this pipeline, we revealed heretofore unknown 
characteristics and patterns of pLGGs managed with sur-
veillance. We found that approximately 55% of pLGGs 
volumetrically progress, and that around 70% require 
treatment and/or progress at some point, usually within 
the first five years of diagnosis. Once patients reached 
18 years old or had been surveilled for > 5 years, pro-
gression was exceedingly rare. The study yields several 
hypothesis-generating findings regarding risk factors for 
progression, including imaging-inferred BRAF wild type 
status, female sex, and younger age at diagnosis. Finally, 
using statistical forecasting, we demonstrate the feasi-
bility of longitudinal volumetric patterns in predicting 
future trends. The findings of this study and resulting 
pipeline will help promote real-time, 3D volumetric as-
sessments for pediatric brain tumors, providing clinicians 
and patients with data to inform prognosis and treatment 
decision-making.

This study marks the first longitudinal volumetric as-
sessment of untreated pLGGs. While bidirectional 2D 
measurements remain the standard-of-care for response 
assessment in pLGG,43 this is based on practicality of 
measurement, rather than biological basis, given the chal-
lenges and resource-intensiveness of 3D manual tumor 
segmentation. Recent studies have suggested that 3D 
volumetrics would provide a more standardized, accu-
rate, and sensitivity measure of response compared to 2D 
measurements.24,44–46 Recent investigations analyzed volu-
metric trends for manually segmented pLGGs in the setting 
of targeted therapy, yielding informative data regarding 
tumor burden during and post-therapy.47 Prior work used a 
large database to yield insights about the natural histories 
of pLGG and probabilities of progression or treatment re-
ceipt.48 This study, while representing a different popula-
tion compared to our subset of surveilled tumors, found 
similarly that early growth behavior portended future pro-
gression and that diagnosis in infancy predicted for the 
worst outcomes.

Notably, our study found that larger tumors initially 
surveilled were less likely to show true volumetric pro-
gression (+ 25% increase). This may be due to the fact that 
larger tumors, in general, are less likely to be surveilled, 
and that a 25% increase in a large tumor represents sub-
stantially more of an absolute cellular increase, when com-
pared to a smaller tumor. Quantitative 3D volumetrics will 
allow for the study of more granular, biologically based 
measurement of tumors, which may help risk-stratify and 
guide management in the future. The relatively high coeffi-
cients of variation (CoV) of the trajectories in early ages (in-
fancy and preschool) are indicative of progression in later 
ages (school age, adolescence).

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf145#supplementary-data
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10 Regressor

A 19-year-old female presented with

headaches following a bicycle accident

involvind head impact. CT and MRI of the

brain were performed, revealing an

incidental left mid-brain tumor.

An 8-year-old female presented

with increased height, obesity, and

secondary sex characteristics. MRI

revealed a juvenile pilocytic

astrocytoma, which was identified

as the underlying cause of the

patient’s precocious puberty and

accelerted growth.

An 17-year-old male

presented after motorbike

accident with brief loss of

consciousness. MRI was

performed revealing a

left-thalamic IGG.
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Figure 2:  (A) depicts the joint cohort curves based on normalized volume, stratified by volumetric classification, treatment initiation, and composite classification. 
Volumetric classification defines progression and regression based solely on an increase/decrease of ± 25% from baseline volume at any time point. Treatment 
initiation indicates whether patients underwent treatment after surveillance. Composite classification combines volumetric classification and treatment initiation; 
patients with volumetric progression or treatment initiation were considered progressors. Volumetric classification yielded 55.5% progressors, 28.3% stable cases, 
and 16.2% regressors, while composite classification yielded 73.7% progressors vs. 26.3% non-progressors. Overall, 42.4% of patients initiated treatment. (B) shows 
exemplary curves for a volumetric progressor, a regressor, and a waxing-waning case (first volumetric progression and then tumor volume decrease), with corre-
sponding axial views of T2W scans at diagnosis and selected follow-up scans. Brief case descriptions are included. (C) shows the percentages of the classifica-
tions and the treatment initiation, and a more granular view on the patients who did or did not volumetrically progress and undergo treatment.
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Beyond volumetric characterization, our study incorp-
orates predictive forecasting conducted by statistical vol-
umetric forecasting. While external validation of these 

techniques is critical, the study introduces a pipeline for 
further investigation. In our internally validated models, 
we find that statistical modeling on the initial 80% of 
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Figure 3.  The graphs in (A) show the volumetric and composite progression status over time considering different age groups and the time 
transcurred since diagnosis. The non-progressed patients are shown in shaded blue, decreasing over the different time components, while the 
green shades show the cumulative progression over time. The red bars show the current progression magnitude at the specific time point period. 
(B) focuses on the longitudinal variability in the patient’s curves, which is represented by the coefficient of variation (CoV). The right-skewed dis-
tribution hints at slow variability in general, with a few exceptions. The stratified coefficient of variation by the age groups at diagnosis reveals 
statistically significant differences assessed through a Kruskal–Wallis H-Test and a post hoc Dunn’s test. All groups are different from each other 
(P-values < .05) except for the young Adults.
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volumetric timepoints can predict future state within an 
average margin of 2.04cm3 error, which demonstrates fair 
predictive abilities, helping anticipate clinical changes and 
derive future volume changes in out-of-curve predictions. 
It is likely that more complex models incorporating clinical, 
genomic, and other multimodal data would further im-
prove these longitudinal predictions.

This study has limitations. While the 3D auto-
segmentation tool performs well in general, manual 
quality assurance of generated volumes is still necessary, 
particularly on lower-quality and older scans. The long 

observation period introduces inherent variability in im-
aging parameters and quality. While our preprocessing 
pipeline mitigated some of these differences, older scans 
generally demonstrated lower signal-to-noise ratios and 
spatial resolution, potentially affecting segmentation preci-
sion. Future work could explore quantitative image quality 
metrics and their correlation with segmentation perfor-
mance across scanner generations.

Since the focus was on the volumetric information ex-
traction, a comparison to auto-2D-RAPNO measurements 
was out of scope for the project. Additionally, while the 
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Figure 4.  Progression association of baseline clinical risk factor was assessed through a univariable and multivariable proportional Cox-
hazards regression (C-Index: 0.735) (A), with age and age grouping being most associated with composite progression (HR: 38.22 for infants, 8.71 
for preschool-aged patients, 0.22 for adolescents and 0.26 for young adults). Variables with (+) are continuous and one unit increase needs to be 
considered when evaluating the risk factor. (B) shows the time distributions for volumetric and composite progression and the difference be-
tween a clinically relevant volume increase of 10% to volumetric progression (25%).
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RAPNO guidelines recommend multi-sequence assess-
ment including post-contrast imaging, our study utilized 
only T2-weighted sequences due to the specificity of our 
validated segmentation algorithm. This approach may 
underestimate tumor components best visualized on 
other sequences, particularly contrast-enhancing regions, 
though T2-weighted imaging remains the primary se-
quence for delineating the full extent of pLGGs.

The study’s retrospective nature subjects it to selection 
biases in cohort identification, which may influence our 
identification of particular risk factors for progression and 
distribution of progression subgroups. While larger sam-
ples will be needed to validate these findings, to-date, 
this represents the largest analysis of untreated pLGGs, 
indicating the relative rarity of this clinical scenario. Our 
study focused exclusively on pLGGs managed with upfront 

surveillance, which represents a specific subset of the 
broader pLGG population. This creates an inherent selec-
tion bias toward patients with less aggressive clinical pres-
entations deemed appropriate for observation, limiting 
generalizability to all pLGGs, particularly those requiring 
immediate intervention. The findings should therefore be 
interpreted as representing the natural history of surveilled 
pLGGs rather than the entire pLGG population.

The volumetric statistical forecasting techniques require 
independent validation given the sample size and the in-
consistent imaging follow-up intervals between patients 
and institutions may have affected model performance. 
While increasing MRI availability would likely be beneficial 
and obviate interpolation techniques, the optimal number 
and steady-state point is affected by the follow-up inter-
vals, which are not uniform in clinical, real-world practice. 
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Scarce data and class imbalance is also an important con-
sideration in trajectory classification and progression as-
sociation as it may compromise the statistical power of 
the analysis by inflating standard errors. Additionally, the 
scope of the prediction algorithms is limited to ML tech-
niques that only provide a general sense of the future mean 
trajectory. The further and more long-term the prediction, 
the broader the CIs and prediction instability. Although 
ARIMA and ARIMA + GARCH combined models ade-
quately fit the curves, further work should investigate pre-
dictions that include imaging data directly, not solely the 
derived volume measurement. Multimodal data and neural 
network-based algorithms trained on larger datasets, as 
well as models trained to separate tumor-subregions (e.g. 
solid vs. cystic components), may improve performance 
and deliver insights into the distinct biological and growth 
dynamics. Our current approach does not differentiate be-
tween solid and cystic tumor components, which may in-
fluence volumetric assessment when cystic changes occur 
without true tumor growth or response. Future iterations 
of our pipeline should incorporate multi-compartment seg-
mentation to allow separate tracking of such components, 
potentially providing more nuanced assessment aligned 
with emerging response criteria that distinguish these 
components.

The lack of universal pathological confirmation repre-
sents another significant limitation. While T2-weighted 
radiographic features can suggest pLGG with reasonable 
confidence, definitive molecular and histopathological di-
agnosis remains the gold standard. As noted in our Results 
section, a subset of patients (42.42%) ultimately underwent 
treatment with surgical intervention, providing patholog-
ical confirmation in some of these cases. Building upon 
our group’s previous work in radiographic prediction of 
BRAF status,33 future work should integrate comprehen-
sive molecular data with volumetric trajectories. Expanded 
cohorts with uniform molecular characterization would 
enable more robust analysis of how specific alterations 
(BRAF, NF1, FGFR1, etc.) correlate with growth patterns. 
Additional radiomic features beyond volumetrics could 
further enhance molecular prediction capabilities.

Finally, future work should integrate complementary MRI 
characteristics including texture features, heterogeneity 
metrics, peritumoral environment assessment, and when 
available, advanced imaging parameters such as apparent 
diffusion coefficient values, perfusion metrics, or spec-
troscopic data. A multidimensional approach combining 
these features with volumetrics would likely yield more 
robust predictive models to guide clinical decision-making 
regarding surveillance intervals and treatment timing.

In summary, this study presents a systematic, longitu-
dinal, volumetric analysis of untreated pLGGs on surveil-
lance, generating novel insights regarding tumor growth 
patterns and associated risk factors for progression. The 
study yields an automated platform for volumetric trajec-
tory generation and analysis for individual patients and 
at-scale. The platform can be adapted for use with other 
medical segmentation models across imaging modal-
ities and diseases. With further validation, volumetric tra-
jectory analysis, as demonstrated in this study, may lead 
to improved characterization of malignancies and clinical 
decision-making.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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