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ABSTRACT
We study a situation that arises in the somatic evolution of cancer. Consider a finite population of

replicating cells and a sequence of mutations: type 0 can mutate to type 1, which can mutate to type 2.
There is no back mutation. We start with a homogeneous population of type 0. Mutants of type 1 emerge
and either become extinct or reach fixation. In both cases, they can generate type 2, which also can
become extinct or reach fixation. If mutation rates are small compared to the inverse of the population
size, then the stochastic dynamics can be described by transitions between homogeneous populations. A
“stochastic tunnel” arises, when the population moves from all 0 to all 2 without ever being all 1. We
calculate the exact rate of stochastic tunneling for the case when type 1 is as fit as type 0 or less fit. Type
2 has the highest fitness. We discuss implications for the elimination of tumor suppressor genes and the
activation of genetic instability. Although our theory is developed for cancer genetics, stochastic tunnels
are general phenomena that could arise in many circumstances.

IN 1951, Hermann J. Muller proposed that cancer the fitness of type 1 is equal to or less than the fitness
of type 0, while the fitness of type 2 is greater than thearises when a single cell receives multiple mutations

(Muller 1951). This perspective, which has been con- fitness of type 0. This scenario describes, for example,
the inactivation of tumor suppressor genes or activationfirmed by numerous studies of cancer genetics, is the

primary motivation for the present article. We describe of genetic instability (Figure 1).
Tumor suppressor genes (TSGs) require inactivatingthe dynamics of sequential mutations in the context of

somatic evolution of cancer. mutations in both alleles (Knudson 1971, 2001; Mool-
gavkar and Knudson 1981). In a normal cell, ac-The majority of human cancers arise in epithelial

tissues. These tissues are organized into small compart- cording to our notation type 0, both alleles are function-
ing. In a type 1 cell, one allele has been inactivated, butments of cells (Mintz 1971; Kovacs and Potten 1973;

Bach et al. 2000). We analyze the population dynamics the cell retains a normal phenotype. In a type 2 cell,
both alleles are inactivated. Often cells with an inac-of one such compartment. Often compartments are sub-

divided into stem cells and differentiated cells (Cairns tivated TSG fail to undergo programmed cell death
(apoptosis) and therefore have a tremendous selective2002). The former divide throughout the life of the

individual and replenish the compartment, whereas the advantage compared to normal cells. There are various
mutational mechanisms that can inactivate TSGs, in-latter have a limited lifetime. This design gives rise to

interesting population dynamics, which we consider cluding point mutations, insertions, deletions, loss of
whole chromosomes, or mitotic recombination. Oftenelsewhere (Frank et al. 2003; Michor et al. 2003a), but

ignore here. In this article, we consider a population the inactivation of a TSG results in a local accumulation
of cells (neoplasia), which provides a first step towardof equivalent cells. The analysis can be interpreted as ap-

plying to the subpopulation of stem cells within a com- cancer. Therefore, we calculate how long it takes for a
compartment of cells to inactivate a TSG and therebypartment or to an effective population size defining the

spatial scale of somatic selection within a tissue. initiate tumor growth. Many genetic pathways to cancer
require the inactivation of several TSGs (Fearon andWe answer the following question: How long does it

take to accumulate two mutations in a compartment of Vogelstein 1990; Kinzler and Vogelstein 1998; Lue-
beck and Moolgavkar 2002). In this context, our the-N cells? We consider three types of cells, labeled 0, 1,

and 2, because they contain 0, 1, and 2 mutations, re- ory helps to calculate how long it takes to eliminate
the next TSG in an already established population ofspectively. Type 1 and type 2 cells can have a reproduc-

tive rate (somatic fitness) that can differ from type 0 precancer cells (sometimes called adenoma).
Another application of our theory is genetic instabilitycells. In general, we are interested in the case where

(Lengauer et al. 1998). Since cancer cells accumulate
many genetic changes, it was proposed that certain mu-
tations increase the rate at which subsequent mutations1Corresponding author: Department of Biology, Kyushu University,

Fukuoka 812-8581, Japan. E-mail: yiwasscb@mbox.nc.kyushu-u.ac.jp occur (Loeb et al. 1974; Jackson and Loeb 1998; Loeb
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10�7/gene/cell division. The second allele of the TSG
is inactivated by losing the chromosome (arm), which
contains the locus of that gene. In CIN cells the probabil-
ity for this event was measured to be 10�2/chromo-
some/cell division (Lengauer et al. 1998). Hence, the
mutation rates for the first and second event differ by
many orders of magnitude.

Throughout the article we assume that the population
size is less than the inverse of the mutation rate from
type 0 to type 1. In this case, we can approximate the evo-
lutionary dynamics as a Markov process describing the
transition from a population that contains only type 0
cells to one that contains only type 1 cells to one that
contains only type 2 cells. In addition there is the possi-
bility that the population moves from all type 0 to all
type 2, without ever visiting the all type 1 state. We re-
fer to the latter transition as “stochastic tunneling.” In
previous articles we have derived tunneling rates forFigure 1.—Transition dynamics. (a) The basic architecture
various limits (Komarova et al. 2003a,b) and we haveof our model contains three types, 0, 1, and 2, with fitness 1,
used tunnels to evaluate the role of chromosomal in-r, and a, respectively. Mutation rates are given by u1 and u2.

(b) As an example, we consider the inactivation of a tumor stability for cancer initiation (Nowak et al. 2002). Here
suppressor (TSP) gene. A wild-type cell, TSP�/�, mutates to a we introduce a new stochastic description and provide
cell with one inactivated allele, TSP�/�, which mutates to a a mathematical derivation of the tunneling rate thatcell with two inactivated alleles, TSP�/�. The somatic fitnesses

holds for a wide range of population sizes.are given by 1, 1, and a � 1. (c) Another example is the
In the model section, we present the basic theory. Inemergence of chromosomal instability, CIN. We start with a

cell where one allele of a TSP gene has been inactivated. This subsequent sections, we calculate the rate of tunneling,
cell receives a mutation that triggers CIN. CIN might have a derive simple approximations for the rate of tunneling,
selective cost, r � 1, but greatly accelerates the loss of the compare our calculations with computer simulations,second allele of the TSP gene. Such transitions are parts of

and then discuss simultaneous double mutations. In thegeneral mutation-selection networks of cancer evolution.
discussion, we summarize our results.

1998; Lengauer et al. 1998). This concept is called ge-
MODEL

netic instability. A main question of all of cancer biology
is to what extent genetic instability is an early event and Consider a population of N asexually reproducing

cells. There are three types of cells, denoted by 0, 1, andtherefore a driving force of tumorigenesis or a late stage
consequence (Kiberstis and Marx 2002; Sieber et al. 2, respectively. Type 0 mutates to type 1 at rate u1, while

type 1 mutates to type 2 at rate u2. Direct mutation from2002). Our theory addresses the following situation: the
first mutation induces genetic instability and thereby type 0 to type 2 is possible in principle, but can normally

be neglected for reasons that we discuss later.increases the rate at which the second mutation might
occur. How long does it take for the second mutation The relative reproductive rates (fitness) of cell types

0, 1, and 2 are given by 1, r, and a, respectively. Usuallyto occur, especially when the first mutation has a selec-
tive cost? This question is important when evaluating we are interested in the situation where r � 1 and

a � 1. Thus, the intermediate type, 1, is either neutralthe possibility that genetic instability is a driving force
of cancer progression (Nowak et al. 2002; Komarova or selectively disadvantageous compared to type 0, while

type 2 has a higher fitness than type 0.et al. 2003a,b; Michor et al. 2003b).
Chromosomal instability (CIN) is a particular form We assume that cells reproduce asynchronously. There-

fore we use a Moran process instead of the standardof genetic instability that refers to increased rates of
gaining or losing whole chromosomes or arms of chro- Wright-Fisher model. Each elementary step of the sto-

chastic process consists of a birth and a death event.mosomes (Lengauer et al. 1998). In yeast, several hun-
dred genes that contribute to maintaining the stability For birth, one of the N cells is chosen at random pro-

portional to fitness. It will give rise to an offspring sub-of chromosomes during cell division are known. Muta-
tions in such genes can trigger the CIN phenotype. A ject to possible mutation. For death, one of the N cells

is chosen at random. The total population size, N, isnumber of human CIN genes have been discovered
(Ragajapolan et al. 2003). We are interested in calculat- strictly constant.

Time is measured in units of cell divisions. If cellsing the time until a population of CIN cells has inacti-
vated a TSG. The first allele of the TSG is inactivated divide on average once per day, then our timescale is

given in days. At time t � 0, all N cells are of type 0.by a point mutation occurring with a probability of
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ing (Nowak et al. 2002; Komarova et al. 2003a,b). Tun-
neling is especially important when the intermediate
mutant is deleterious and the population size is large,
because then the expected waiting time for its fixation
is very long.

Denote by x0, x1, and x2, respectively, the probability
that the system is in state all 0, all 1, and all 2. The
Markovian jump process is described by the forward
Kolmogorov differential equation

x·0 � �Nu1�(r)x0 � Rx0

x·1 � Nu1�(r)x0 � Nu2�(a)x1

Figure 2.—Stochastic tunneling. In a homogeneous popu- x·2 � Nu2�(a)x1 � Rx0 . (1)
lation of type 0 cells, type 1 mutants with fitness r � 1 arise.
They go to fixation or to extinction. In the latter case, type In the following section, we calculate the rate of tun-
1 cells might produce type 2 cells before becoming extinct. neling, R, from the all 0 state to the all 2 state. The so-
Type 2 cells have fitness a � 1 and are likely to reach fixation lutions of system (1) with various expressions for R arein the population. Hence, the system can go from all 0 to all

compared with direct stochastic simulations of the2 without having ever been in all 1.
Moran process.

After some time, a single mutant cell of type 1 will be
THE RATE OF TUNNELINGgenerated. This cell will lead to a lineage of type 1 cells

that will either go to extinction or go to fixation. The Whenever a new mutant cell of type 1 is produced in
probability of fixation starting from a single type 1 cell a population of type 0 cells, the lineage starting from
with fitness r is given by it can temporally increase in abundance, but will eventu-

ally become extinct in the majority of cases. The proba-
�(r) �

1 � 1/r
1 � 1/r N

. bility of extinction is given by 1 � �(r). Tunneling occurs
when the lineage of type 1 mutants, before extinction,

This probability is 1/N if the mutant is neutral, r � 1, produces a type 2 mutant that reaches fixation.
but is �1/N if the mutant is deleterious, r � 1 (Dur- Suppose a new type 1 mutant is produced at time 0.
rett 2002; Komarova et al. 2003a,b). When the popula- Let Y(t) denote the number of cells of the lineage aris-
tion size N is finite, there is always a positive probability ing from this one mutant cell (Figure 2). For a given
of fixation even for deleterious mutants. trajectory Y(t), the probability of appearance and fixa-

If Nu1 � 1, the mean waiting time until the appear- tion of a type 2 mutant is given by 1 � P, where
ance of a successful mutant is much longer than the

P � exp[�ru2�(a)�
∞

0
Y(t)dt]. (2)average time required for the fixation of the mutant.

Hence, we can describe the evolutionary dynamics as a This expression is the zeroth term of a Poisson distribu-
simple Markovian jump from an all 0 population to an tion. The exponent is given by the cumulative number
all 1 population. The transition rate between these two of type 1 cells multiplied by the mutation rate from type
states is given by Nu1�(r). The waiting time for the transi- 1 to type 2, ru2, and the probability of fixation, �(a), of
tion follows a negative exponential distribution with one type 2 cell that arises in a population of type 0 cells.
mean 1/Nu1�(r). Note that using �(a) is an approximation, because the

After the fixation of type 1, a similar process describes type 2 cell arises in a population that contains a mixture
the transition from an all 1 population to an all 2 popu- of type 0 and type 1 cells. The probability that a particu-
lation. If Nu2 � 1, we can regard this transition as a Mar- lar trajectory, Y(t), does not generate a successful type
kovian jump occurring at a rate Nu2�(a/r). The waiting 2 mutant is given by P.
time for the transition from all 1 to all 2 follows a nega- The calculation of the tunneling probability can be
tive exponential distribution with mean 1/Nu2�(a/r). carried out by considering a doubly stochastic process.
The probability of fixation of a type 2 cell in a population There are two sources of stochasticity: the first one is the
of N � 1 type 1 cells is �(a/r). stochasticity generating the trajectory of type 1 mutants,

If the mutation giving rise to the second mutant is Y(t); the second one is the stochasticity generating the
fast and if the fitness advantage of the second mutant spread of type 2 mutants. If the average with respect to
is large, the second mutant might appear and spread the former stochasticity is denoted by E[*], then the
before the fixation of the first mutant (Figure 2). This rate of tunneling can be expressed as
leads to a one-step transition from the all 0 population
to the all 2 population without ever visiting an all 1 pop- R � Nu1Pr[Y(∞) � 0]E[1 � P |Y(0) � 1, Y(∞) � 0].

(3)ulation. This phenomenon is called stochastic tunnel-
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Hence, the rate of tunneling is the product of three 0 � �ru2�(a)Vi

factors: the rate of producing type 1 mutants times the
probability that the lineage of type 1 mutants will be- � {r(Vi�1 � Vi) � (Vi�1 � Vi)}

N � i
ir � (N � i)

.
(7)

come extinct times the conditional expectation of ini-
tiating a successful type 2 lineage. The expectation is This recursion holds for i � 1, 2, . . . , N � 1. The
subject to the conditions that the initial number of boundary conditions are V0 � 1 and VN � 0. Using
type 1 cells is 1, Y(0) � 1, and that the lineage will even- Equation 7, we can determine the solution of V1. We can
tually become extinct, Y(∞) � 0. In this way, we exclude use an iterative approximation to obtain a numerical
the contribution of the spread of type 2 mutants after solution of Equation 7. For example, we start with the
fixation of type 1 mutants. Let us now calculate the initial distribution, Vi � 1 � i/N for i � 0, . . . , N, and
conditional expectation. The type 1 lineage either goes calculate Vi in the next round by
to fixation, Y(∞) � N, or goes to extinction, Y(∞) � 0.
There is no possibility for Y(t) to stay between 0 and N

V 	i � (rVi�1 � Vi�1)��ru2�(a)
ir � (N � i)

N � i
� r � 1 �,forever. Therefore, we have

E[P |Y(0) � 1] � E[P |Y(0) � 1, Y(∞) � 0]Pr[Y(∞) � 0]
i � 1, 2, 3, . . . , N � 1. (8)

� E[P |Y(0) � 1, Y(∞) � N]Pr[Y(∞) � N].

When this iteration converges, the stationary distribu-If Y becomes fixed, Y(∞) � N, and then the integral
tion of Vi satisfies Equation 7. The value for V1 together�∞

0 Y(t)dt diverges to infinity and P � 0. Since the second
with Equation 6 gives the rate of tunneling.term in the right-hand side is zero, Equation 3 can be

rewritten as

R � Nu1{Pr[Y(∞) � 0] � E[P |Y(0) � 1]}. (4) EXPLICIT FORMULAS FOR THE
RATE OF TUNNELING

Note that the above expression for R is always positive,
We can derive explicit formulas for the tunnelingbecause P � 1 and P � 0 if the intermediate mutant

rate by further examining Equation 7. According to thebecomes fixed, Y(∞) � N.
argument in appendix a, we can derive the followingLet us define
approximate formula:

Vi � E[P |Y(0) � i] for i � 0, 1, 2, 3, . . . , N. (5)

Note that V0 � 1 and VN � 0. The expectation in Equa- V1 � 1 �
�(1 � r) � √(1 � r)2 � 2(1 � r)ru2�(a)

1 � rtion 4 is equal to V1. We can write
� [higher-order terms]. (9)

R � Nu1{1 � V1 � �(r)}. (6)

As we pointed out earlier, 1 � V1 � �(r) in Equation 6We have used Pr[Y(∞) � 0] � 1 � �(r) for the extinc-
is always positive from the definition of a probability. Iftion probability. According to the Moran model, the
V1 is replaced by the simpler formula shown above, thentransition from i to i � 1 occurs at rate (N � i)(ir/(ir �
1 � V1 � �(r) can become negative. Hence, we use ap-(N � i))). The transition from i to i � 1 occurs at rate
proximation (9) only when Equation 6 is positive, andi((N � i)/(ir � (N � i))). The system remains in i
replace it by 0 otherwise. We haveotherwise. To derive a recursive formula for Vi , we

expand the function according to events occurring in
R � Nu1 ��(1 � r) � √(1 � r)2 � 2(1 � r)ru2�(a)

1 � r
� �(r) �

�

.a short time interval of length 
t.

(10)Vi � exp[�ru2�(a)i
t]E	exp	�ru2�(a)�
∞


t
Y(t)dt
|Y(0) � i


The notation [x]� means max{0, x }.
When one of the terms within the square root symbol� (1 � ru2�(a)i
t)�j E	exp	�ru2�(a)�

∞


t
Y(t)dt
|Y(
t) � j


in Equation 10 is much larger than the other, we have
� Pr( j ← i, in 
t) � O((
t)2) simple expressions for two extreme cases,

� (1 � ru2�(a)i
t){rVi�1 � Vi�1}
i(N � i)

ir � (N � i)

t

R � �
Nu1 � r

1 � r
u2�(a) � �(r) �

�

if 1 � r � 2√u2�(a)

Nu1 �√u2�(a) �
1
N �

�

if 1 � r � 2√u2�(a).� (1 � ru2�(a)i
t)Vi �1 � (r � 1)
i(N � i)

ir � (N � i)

t �

(11)
� O((
t)2).

The first and second expressions provide excellent ap-
proximations for the rate of tunneling through a delete-By rearranging terms, dividing both sides by 
t, and

taking the limit when 
t is very small, we obtain rious and a neutral mutant, respectively.
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Figure 4.—Computer simulation and theory for tunnelingFigure 3.—Computer simulation and theory for the neutral
through a disadvantageous intermediate mutant, r � 1. Thetunnel, r � 1. The solid circles show the results of direct
same as for Figure 3 is shown, but parameter values are u1 �simulations of the Moran process. We performed 100,000
10�5, u1 � 10�2, r � 0.6, and a � 10.(top) and 10,000 (bottom) independent runs and show the

fraction of runs that result in a homogeneous all 2 population
after 1000 cell generations. One cell generation consists of N
elementary steps of the Moran process. Cellular population computer simulation. The solid curve uses Equations 6
sizes varied from N � 1 to 1000. The lines show the solution and 8 for the tunneling rate. The broken curve, which
of the Kolmogorov forward equation. The solid line uses the

is in excellent agreement with the data, uses Equationtunneling rate as given by Equations 6 and 8. The broken line
11. The other broken curve, the one that remains con-that is in good agreement uses Equation 11. The other broken

line indicates the solution neglecting the tunnel. Parameter stant for larger values of N, neglects tunneling. This is
values are u1 � 10�5, u1 � 2 � 10�3, r � 1, and a � 10. accurate only if N � 1/√u2�(a).

Figure 4 shows simulations of tunneling through a
deleterious intermediate mutant, r � 1. Again, the

COMPUTER SIMULATIONS tunneling rate using Equations 6 and 8 (solid curve) is
a perfect fit. Using Equation 11 also leads to an excellentIn Figures 3 and 4, we compare our analytical results
agreement. Neglecting the tunnel is completely wrongwith direct computer simulation of the Moran process.
if N is above a critical size, which is implicitly given byAt each elementary step of the Moran process, one cell
ru2�(a)/(1 � r) � �(r).is chosen for reproduction, possibly with mutation, and

The mathematical analysis assumes that the lineagesone cell is chosen for elimination. Thus the total popula-
starting from different mutants of type 1 behave inde-tion size remains constant. For each parameter choice,
pendently, which is implicit in the calculation of thewe compute many independent runs of the stochastic
doubly stochastic process. This assumption holds if mu-process. Then we calculate the fraction of runs that have
tations from type 0 to type 1 occur infrequently, Nu1 �resulted in fixation of type 2 cells by a certain time. The
1. If this inequality does not hold, then a lineage start-results are compared with the solution of the Kolmo-
ing from a single type 1 might not go extinct beforegorov equation (Equation 1), using different formulas
the next mutation creating a type 1 mutant arises. Thisfor the tunneling rate, R. There is perfect agreement if
effect should cause a deviation from our results for verywe use Equations 6 and 8 for calculating the tunneling
large N.rate. There is excellent agreement if we use the simpli-

fied Equation 11, except when N is very close to the
critical value at which tunneling starts to become impor-

DIRECT MUTATIONtant. We also show that ignoring the tunnel totally fails
once the population is larger than a critical size. In this article, we assumed that mutation from type

Figure 3 shows simulations of the neutral tunnel, 0 to type 1 and the mutation from type 1 to type 2 must
occur in separate cell division events. We also mustwhere r � 1. Solid circles indicate the results of the
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tically impossible when we consider tunneling via a ge-
netic instability mutation. Suppose the first mutation
occurs in a gene that triggers genetic instability, which
then increases the rate of the second mutation. The
rate increase, however, may come into effect only during
the next cell division. In this case, tunneling with a fast
second step is much faster than a double mutation with
two slow steps.

DISCUSSION

We have provided a theory that allows us to calculate
the rates at which mutations happen in the somatic
evolution of cancer. This is the continuation of an on-
going effort to understand dynamics of cancer pro-
gression (Nordling 1953; Armitage and Doll 1954,
1957; Fisher 1958; Cook et al. 1969; Bell 1976; Goldie
and Coldman 1979, 1985; Moolgavkar and Knud-Figure 5.—Transition rates in compartments. (a) The tran-
son 1981; Wheldon 1988; Chaplain 1995; Byrne andsition rates for r � 1. In a homogeneous compartment con-

taining only type 0 cells, type 1 cells emerge and might take Chaplain 1996; Owen and Sherratt 1999; Bar-Or
over the compartment. In this case, the compartment moves et al. 2000; Herrero-Jimenez et al. 2000; Wodarz and
from state 0 to state 1 at a rate u1. Here u1 denotes the mutation Krakauer 2001; Plotkin and Nowak 2002; Gatenbyrate producing a type 1 cell, N denotes the number of cells

and Maini 2003; Little and Wright 2003).per compartment, and the probability of fixation of a neutral
The inactivation of a tumor suppressor gene requires,mutant is given by 1/N. Once the type 1 cell has taken over

the compartment, a type 2 cell emerges and might be fixed. first, a neutral mutation and, second, an advantageous
Then the compartment moves from state 1 to state 2 at a rate mutation (“advantageous” for the cell, not for the orga-
Nu2�(a). Here, u2 denotes the mutation rate producing a type nism). How long does it take to eliminate a tumor sup-2 cell, and �(a) denotes the probability that a type 2 cell

pressor gene in a population of N cells? We find thatwith fitness a � 1 reaches fixation in an all 1 compartment.
Alternatively, a type 2 cell can be produced before the type x2(t) � t 2Nu1u2�(a)/2 if N � 1/√u2�(a) and that x2(t) �
1 cell has taken over the compartment, such that the compart- tNu1√u2�(a) if N � 1/√u2�(a). Thus, the probability
ment moves from state 0 directly to state 2 without ever visiting x2(t) that the population consists of cells with two in-state 1. This stochastic tunneling takes place at rate

activated alleles of the tumor suppressor (TSP) gene atNu1[u2�(a) � 1/N]�. (b) The transition rates for r � 1. Here
the compartment moves from state 0 to state 1 at a rate Nu1�(r) time t grows as a quadratic function of time for small
and from state 1 to state 2 at a rate Nu2�(a/r). The rate of the population sizes and as a linear function of time for
selected stochastic tunnel is given by Nu1[(ru2/(1 � r))�(a) � large population sizes. “Small” and “large” are defined
�(r)]�.

by the rate of the second mutation. Chromosomal insta-
bility increases the rate of the second mutation (Nowak
et al. 2002) and therefore leads to the elimination ofconsider the possibility that these two mutations occur
TSP genes in only one step also for rather small popula-in a single event of cell division, causing a direct mu-
tions of cells. Note that the explicit equations for x2(t)tation from type 0 to type 2. If the mutation rates are u1

hold in the limit of low mutation rates or short time-and u2 , then double mutants might arise at rate u1u2 .
scales. Otherwise the solution of the Kolmogorov for-Thus, direct mutation would result in the transition
ward equation (Equation 1) must be used.from an all 0 to an all 2 population at rate Rdirect �

Genetic instability requires a mutation that might beNu1u2�(a). In contrast, the tunneling rate is R � Nu1

((r)/(1 � r))u2�(a), when the population size is suffi- deleterious for the cell. This mutation, however, in-
ciently large. These two rates have the same order of creases the mutation rate and therefore the chance that
magnitude with respect to the mutation rate. Compar- this cell undergoes an advantageous mutation. Thus
ing these two rates, we conclude that direct mutation the essence of the emergence of genetic instability is
is faster than tunneling if r � 0.5. Otherwise tunnel- described by a pathway from type 0 to 1 and 2, where
ing is faster. type 1 is less fit than type 0, but type 2 is more fit than

If the intermediate mutant is neutral, r � 1 (Fig- type 0. Denote by x2(t) the probability that a population
of N cells has made both mutational steps at time t. Theure 5), then tunneling, R � Nu1√u2�(a), is always faster
probability x2(t) is given by a convolution integral ofthan direct mutation, Rdirect � Nu1u2�(a), because the
two negative exponential distributions. For Nu2t � 1,mutation rate u2 is small.

We note that double mutation could be mechanis- we obtain the approximation x2(t) � t 2Nu1u2�(r)�(a)/2.
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For Nu2t � 1, we obtain the approximation x2(t) � helical regions of RNA molecules, a change in one site
destabilizes the secondary structure. This mutation cantNu1�(r) as long as N is below a critical value. If instead
be compensated by a mutation in the opposite site ofN is greater than this critical value, we have x2(t) �
the base pair (Higgs 1998; Innan and Stephan 2001;tNu1u2(r/(1 � r))�(a). The critical value is implicitly
Savill et al. 2001). In this case, the second mutant hasgiven by u2r/(1 � r) � �(r)/�(a). If N is near the critical
the same fitness as the original type, while in the situa-value, then the more accurate tunneling equations
tion discussed in this article, the second mutant has ashould be used.
greater fitness than the wild type. A more importantThe explicit formulas for the rate of tunneling are
difference is that the studies of compensatory neutraluseful for demonstrating the effect of various parame-
mutations focus on the effect of recombination. Theters and for providing an intuitive understanding. For
evolution of a fitter genotype via intermediate deleteri-example, the approximate formula for the deleterious
ous genotype(s) is more difficult in the presence oftunnel, R � N(u1/(1 � r))ru2�(a), is a product of three
recombination than in its absence. For somatic evolu-factors. The first factor is the product of the population
tion of cancer, we can neglect recombination.size N and the frequency of mutation-selection balance,

The results presented here provide a step toward con-u1/(1 � r), indicating the expected number of type 1
structing a comprehensive mathematical theory for themutants in the population. The second factor, ru2, de-
somatic evolution of cancer. We need to understandnotes the mutation rate from type 1 to type 2. The third
the nature of rate-limiting steps in cancer progressionfactor, �(a), is the probability of successful fixation of
and the effect of cellular population size and geneticthe second mutant once it appears in the population.
instability.Such a simple and intuitive understanding is not avail-

We thank Natalia Komarova for many helpful discussions. This workable for the corresponding formula when the type 1
was completed during Y.I.’s visit to the Institute for Advanced Study,mutant is neutral, R � Nu1√u2�(a). Why it is propor-
Princeton, New Jersey. Support from the David and Lucile Packardtional to the square root of the second mutation rate Foundation and Jeffrey Epstein is gratefully acknowledged.

is not easy to interpret.
When the population size is very large, the fixation

of either deleterious or neutral mutants is difficult. As
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This equation has two roots, one positive and one nega- f/N � 
�(1 � r) � √(1 � r)2 � 2(1 � r)ru2�(a)�/
tive. Since φ(0) � 1 and φ(1) � 0, we expect that φ(y) (1 � r). This is very small because u2 is small. Then V1
decreases smoothly from φ(0) � 1. Then φ(y) decreases in Equation 6 is approximated as
exponentially with the rate specified by the negative
root. In effect, we assume φ(y) � exp[�fy] for small y.

V1 � exp�� f
N � � 1 �

�(1 � r) � √(1 � r)2 � 2(1 � r)ru2�(a)
1 � rReplacing this in Equation A3 and setting y � 0, we

have a quadratic equation for f, which can be solved as � [higher-order terms]. (A4)




