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Abstract

Whenever life wants to invade a new habitat or escape from a lethal selection pressure, some mutations may be necessary to yield

sustainable replication. We imagine situations like (i) a parasite infecting a new host, (ii) a species trying to invade a new ecological

niche, (iii) cancer cells escaping from chemotherapy, (iv) viruses or microbes evading anti-microbial therapy, and also (v) the

repeated attempts of combinatorial chemistry in the very beginning of life to produce self-replicating molecules. All such seemingly

unrelated situations have a common structure in terms of Darwinian dynamics: a replicator with a basic reproductive ratio less than

one attempts to find some mutations that allow indefinite survival. We develop a general theory, based on multitype branching

processes, to describe the evolutionary dynamics of invasion and escape.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

At the very beginning of life (on earth or elsewhere),
organic chemistry produced some macromolecules with
random sequences. According to the RNA first hypoth-
esis (Eigen and Schuster, 1977, 1982; Cairns-Smith,
1982; Szathmary and Maynard Smith, 1997; Orgel,
1998), these polymers had a limited ability of self-
replication. Only a small subset of the random sequences
had a basic reproductive ratio, R; greater than one,
which means that one sequence could produce on
average more than one offspring per lifetime. The
overwhelming majority of random sequences had
Ro1; and therefore lead to lineages that would
eventually go to extinction. Hence the physical and
chemical environment of this world generated many
short sequences capable of replication. We want to
calculate the probability that one or many of those sub-
critical lineages will mutate to a sustainable sequence
with R > 1:
Imagine a virus of one host species that is transferred

to another host species, such as recent epidemics like
HIV or SARS. In the new host, the virus has a basic
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reproductive ratio less than one (Anderson and May,
1992). Some mutations may be required to generate a
virus mutant that can lead to an epidemic in the new
host species. There will be repeated attempts to invade
the new host. We want to calculate the probability that
such an attempt succeeds in producing a mutant virus
that initiates a new epidemic.
Suppose a successful HIV vaccine is found. Vacci-

nated hosts become exposed to a viral quasispecies. If
the vaccine is effective, then most virus mutants will
have a basic reproductive ratio less than one in the
vaccinated host (Nowak and May, 2000). There will be
some mutants, however, that can break through the
protective immunity of the vaccine. We want to
calculate the probability that a virus quasispecies of a
given size finds (or already contains) an escape mutant
that establishes an infection and thereby causes vaccine
failure.
Cancer therapy often involves surgery or radiation to

remove the main tumor followed by chemotherapy to
eliminate remaining cancer cells. In the case of effective
chemotherapy the majority of those cancer cells have a
basic reproductive ratio less than one. Those cells are
sensitive to this particular therapy. Genetic heterogene-
ity in the population of cancer cells could mean that
some mutants have a basic reproductive ratio in excess
of one. Those cells are resistant. Furthermore, sensitive
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Fig. 1. Extinction or escape. Individual replicators undergo reproduc-

tion and death at random times. All birth and death events occur

independently of each other: there is no frequency or density-

dependent fitness. A lineage can either die out or escape from selection

pressures to survive indefinitely. Persisting replicators arise by

mutations in sub-critical lineages under selection pressure or preex-

istence prior to the onset of selection pressure.
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cells could mutate to give rise to resistant cells. For
example, resistance to Gleevec is caused by point
mutations in the Bcr-Abl oncogene (Gorre et al., 2001;
Sawyers, 2001). Other resistance mutations involve the
inactivation of p53 or other tumor suppressor genes
(Ozols, 1989; Keshelava et al., 2000; Kigawa et al.,
2001). We want to calculate the probability of success or
failure of anti-cancer therapy.
These are the main applications we have in mind

when constructing our theory. More generally we
describe situations where a genetically heterogeneous
population of replicators is under selection to invade a
new niche or repopulate a niche under a major selection
pressure (such as vaccination or chemotherapy). Our
approach is based on the theory of multi-type branching
processes (Athreya and Ney, 1972; Seneta, 1970). The
main assumption is that lineages behave independently
of each other. Thus the fitnesses of individual genotypes
are constant and not frequency or density dependent.
Recombination as a mutational mechanism has to be
excluded because its effective rate is intrinsically
frequency dependent.
In Section 2 we outline the basic theory calculating

the probability of non-extinction/escape for lineages
starting from single individuals. We perform the
calculation for various cases of increasing complexity
ranging from single types to sequential mutations,
networks and quasi-species (Section 3). In Section 4
we calculate the non-extinction probability when start-
ing with heterogeneous populations.
2. Non-extinction of lineages

Consider a continuous-time branching process. In-
dividual replicators undergo reproduction or death at
random times (Fig. 1). There are different mutants with
different fitnesses. In accordance with the fundamental
assumption of branching processes, individuals behave
independently of each other: there is no frequency- or
density-dependent fitness. All birth and death events
occur independently of each other.

2.1. A single type

Let us first explore the simplest case with a single type
of replicator. Let NðtÞ be the number of individuals at
time t: We want to calculate the probability that the
population will become extinct or survive indefinitely,
i.e. escape. Consider the generating function

gðz; tÞ ¼ EðzNðtÞjNð0Þ ¼ 1Þ: ð1Þ

Here, z is a positive parameter satisfying 0ozp1:
Within a short time interval of length Dt; an individual
dies with probability Dt; produces an offspring with
probability RDt; and remains unchanged otherwise. R is
the basic reproductive ratio, defined as the expected
number of offspring produced from a single individual
during its lifetime. We obtain

gðz; t þ DtÞ ¼ Dt þ gðz; tÞ½1� ð1þ RÞDt� þ gðz; tÞ2RDt:

We have used EðzNðtÞjNð0Þ ¼ 2Þ ¼ EðzNðtÞjNð0Þ ¼ 1Þ2 ¼
gðz; tÞ2 because two lineages starting from different cells
at a given time behave independently. In the limit of
infinitesimal Dt; we obtain the ordinary differential
equation

dg

dt
¼ ð1� gÞð1� RgÞ

with initial condition, gðz; 0Þ ¼ z; because Nð0Þ ¼ 1: We
can derive the time-dependent solution of the generating
function. At z ¼ 0; the generating function is equal to the
probability of extinction. The rate of ultimate extinction
is given by gð0;NÞ ¼ PrðNðNÞ ¼ 0jNð0Þ ¼ 1Þ: There-
fore the probability of non-extinction (escape) is

x ¼ 1� gð0;NÞ ¼
0 Rp1;

1� 1=R R > 1:

(
ð2Þ

Escape is not possible if Rp1: If R > 1 there is a certain
probability of escape. Note that in this case the expected
population size increases with time, but the escape
probability is less than 1, because demographic stochas-
ticity causes random extinction.
We call a replicator with R > 1 sustainable, while a

replicator with Ro1 is not sustainable. In terms of
escape from anti-cancer therapy, a cell with R > 1 is
resistant (is an escape mutant) while a cell with Ro1 is
sensitive to therapy. In certain applications of the theory
it also makes sense to consider the neutral case, R ¼ 1:
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Fig. 2. Probabilities of escape. Consider a sequence of m ¼ 3

mutations. An individual of type i ¼ 1 mutates with probability u1
to an individual of type i ¼ 2: An individual of type i ¼ 2 mutates with

probability u2 to an individual of type i ¼ 3 which mutates with

probability u3 to an individual of type i ¼ 4: The basic reproductive
ratios, defined as the expected number of offspring produced by a

single individual during its lifetime, of individuals of type i ¼ 1;y; 4
are given by R1;y;R4: R1; R2; and R3 are less than one, while R4 is

greater than one. The probabilities of escape of individuals of type

i ¼ 1;y; 4 are given by x1;y; x4 (see Eq. (3)).
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2.2. Two types

Next we examine the situation of two types. Type 1
mutates to type 2 with a small probability u: There is no
back mutation. Within a short time interval, Dt; an
individual dies with probability Dt: Type 1 reproduces
with probability R1Dt: Type 2 reproduces with prob-
ability R2Dt: Type 1 generates a type 1 offspring with
probability 1� u; and a type 2 offspring with prob-
ability u: If the mutation rate u is small compared to all
other parameters, we can expand the escape probability
with respect to u and consider the leading order term
only. Let x1 denote the probability of non-extinction
(escape) when starting from a single individual of type 1.
If R1p1 but R2 > 1; then type 1 individuals will
eventually go extinct, but mutations can lead to type 2
individuals that can increase indefinitely. Let x2 be the
probability of non-extinction when starting with a single
individual of type 2. We can calculate these probabilities
by using a generating function for two types. From the
recurrence formula for a multi-type generating function,
we derive the equation for the non-extinction probabil-
ities of different types (Appendix A). If the mutation
rate u is much smaller than all other parameters, we
obtain analytical expressions. The leading order terms
for a small mutation rate, u; are

x1 ¼ 1� 1=R1 if R1 > 1 and R1 � 1b
ffiffiffiffiffiffiffi
ux2

p
; ð3aÞ

x1 ¼
ffiffiffiffiffiffiffi
ux2

p
if R1E1 and j1� R1j5

ffiffiffiffiffiffiffi
ux2

p
; ð3bÞ

x1 ¼
R1

1� R1
ux2 if R1o1 and 1� R1b

ffiffiffiffiffiffiffi
ux2

p
: ð3cÞ

Eq. (3a) implies that if type 1 itself is an escape mutant
(R1 > 1), then the escape probability is of the order of 1,
which is much larger than mutation rate u: In contrast, if
R1p1; then the escape probability is zero in the absence
of mutation. With mutation, the dominant term of the
escape probability is of the order of

ffiffiffi
u

p
if R1E1; or of

the order of u if R1o1 (Eqs. (3b) and (3c)). The escape
probability of a single type 2 individual with R2 > 1 is
x2 ¼ 1� 1=R2:

2.3. Sequential mutations

In the following, we calculate the probability of non-
extinction/escape for a sequence of m � 1 mutations
(Fig. 2). Consider the situation where all intermediate
mutants, i ¼ 1;y;m � 1; have Rio1 and 1� Rib

ffiffiffi
u

p
:

The final type, m; has Rm > 1 and is therefore an escape
mutant. Let us introduce the notation ai ¼ Ri=ð1� RiÞ:
Denote by ui the mutation rate from type i to type i þ 1:
Other mutations (from i to j where jai þ 1) are not
possible. The escape probability starting from a single
type i via this chain of mutations is

xi ¼ xm

Ym�1

j¼1

ajuj i ¼ 1;y;m;

xm ¼ 1� 1=Rm: ð4Þ

If the mutation rates are the same for all steps and equal
to u; the escape probability starting from a single type 1
is proportional to um�1; where m � 1 is the number of
mutational steps required to reach the escape mutant, m:

2.4. Mutation networks

Let us consider a mutation network of m types. The
mutation from i to j is given by uij : Let uii ¼ 0: The first
n types have a basic reproductive ratio less than 1, all
remaining types have a basic reproductive ratio greater
than one. Thus Rio1 for i ¼ 1;y; n and R1 > 1 for
i ¼ n þ 1;y;m: The escape probabilities are given by
the linear system

xi ¼
Ri

1� Ri

Xm

j¼1

uijxj

 !
i ¼ 1;y; n;

xi ¼ 1� 1=Ri i ¼ n þ 1;y;m: ð5Þ

2.5. Quasispecies

From an information theoretic perspective and with-
out loss of generality, we can describe genomes as binary
sequences of a given length. A heterogeneous ensemble
of genomes is called a quasispecies (Eigen and Schuster,
1977). Here we study stochastic quasispecies dynamics
(McCaskill, 1984; Nowak and Schuster, 1989) in a
situation of invasion or escape.
Suppose mutations in n positions are required to

reach an escape mutant. There are m ¼ 2n mutants
which we label i ¼ 1;y;m: The escape mutant is
denoted by index m: Basic reproductive ratios are given
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by Rio1 for i ¼ 1;y;m � 1 and Rm > 1: If the
mutation rate per bit is denoted by u; then the
probability to mutate from sequence i to sequence j

is given by uhij ð1� uÞn�hij : The Hamming distance, hij ;
counts the number of point mutations between two
sequences.
As shown in Appendix A, we can express the escape

probability as the sum of contributions from different
paths leading to the escape mutant m: Paths that include
a smaller number of mutational steps are more
important than those with a larger number of steps.
For small mutation rates, u; we only have to consider
those paths with the minimum number of steps. For
example, suppose n ¼ 3 and the escape mutant is 111
(Fig. 3). Starting from 000, the following paths are
examples of paths that have the minimum number of
mutational steps: (i) 000 to 010 to 011 to 111; (ii) 000 to
101 to 111; (iii) 000 to 111. All those paths include three
steps. Observe that multiple simultaneous mutations
(as shown in path (ii) and (iii)) can be as important as
sequential single mutations (path (i)). The following
path has 4 mutational steps and can be neglected in our
analysis: 000 to 110 to 011 to 111. The minimum
number of steps is given by the Hamming distance
between starting sequence and escape sequence.
The escape probability starting from a single type m is

given by xm ¼ 1� 1=Rm: The escape probability starting
from a single type i is

xi ¼ xm

X
pAPi

vðpÞ: ð6aÞ

The set Pi contains all those paths, p; that connect
sequence i and m with the minimum number of steps,
000 010 011

000 101

000

000

110

011

000

110

011

011

a

b

c

d

e

minimum
path
length

longer
than 
minimum

Fig. 3. Minimum number of mutational steps. The minimum number

of steps is given by the Hamming distance between starting sequence,

here 000, and escape sequence, here 111. The Hamming distance, hij ;
counts the number of point mutations between two sequences. Here we

have h000;111 ¼ 3: Panels (a)–(c) are examples for mutational paths

containing the minimum number of mutational steps, because they all

include three steps. Panels (d) and (e) are examples for mutational

paths containing more than 3 mutational steps. Such paths can be

neglected in our analysis.
him: Consider a particular path

p : i ¼ k1-k2-k3-?-kg ¼ m: ð6bÞ

The value of path p is given by

vðpÞ ¼ uhim

Yg�1
j¼1

akj
: ð6cÞ

As before, we have ai ¼ Ri=ð1� RiÞ: In general,
simultaneous mutations at k loci occur at rate uk per
cell division. This contribution has the same order of
magnitude OðukÞ as a chain of k one-step mutations. All
paths of successive mutations from 00..0 to 11..1 where
the number of 1 digits increases at each step have the
same order of magnitude with respect to u:

2.5.1. Sequence length two

As a first specific example, let us suppose mutations in
two loci are relevant for escape (Fig. 4). The mutation
rates in these two loci are u1 and u2:We consider 4 types,
00, 01, 10 and 11. The basic reproductive ratios
R00;R01;R10 are less than 1, while R11 > 1: As before
we use ai ¼ Ri=ð1� RiÞ: The probabilities for escape
starting with a single individual of type 00, 01, 10 or 11
are

x00 ¼ u1u2a00ð1þ a01 þ a10Þx11;

x01 ¼ u1a01x11;

x10 ¼ u2a10x11;

x11 ¼ 1� 1=Rii: ð7Þ

In the expression for x00; the first term in brackets
indicates the contribution of direct mutation from 00 to
11, while the second and third terms indicate sequential
mutations via 01 and via 10, respectively. Direct
mutation from 00 to 11 is more important than
1u

1u

2u 2u00a

0100aa

1000aa

0101ba

1010ba

)1( 100111 bbb ++

Fig. 4. Two mutations to escape. The mutation rates in the two

positions are u1 and u2: We consider i ¼ 4 types, 00, 01, 10 and 11.

Type 00 is the wild type, type 11 the escape mutant. The basic

reproductive ratios R00; R01; and R10 are less than one, while R11 > 1:
Here ai ¼ Ri=ð1� RiÞ and bi ¼ 1=ð1� wiÞ for i ¼ 00; 01, 10, 11. The
parameter wi denotes the fitness of type i prior to the onset of selection

pressure. The probabilities of escape starting with a single individual of

type 00, 01, 10 or 11 are given by Eq. (7).
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sequential mutation from 00 to 01 to 11, if 1 > a01 which
is equivalent to R01o1=2:Direct mutation from 00 to 11
is more important than sequential mutation via either
01 or 10 if R01 þ R10 � ð3=2ÞR01R10o1=2: The more
deleterious the intermediate steps are the more impor-
tant is direct mutation. Interestingly the relative
importance of direct versus sequential mutations does
not depend on a comparison between R01; R10 and
R00; but only on the absolute values of R01 and R10:

2.5.2. Sequence length n

Let us now expand the previous calculation to
binary sequences of length n; but assuming identical
basic reproductive ratios, Ro1; for all sequences
i ¼ 1;y;m � 1; and identical mutation rate, u; for all
positions. The escape mutant, m; has basic reproductive
ratio Rm > 1: We derive the following formulas in
Appendix C. Let fiðxÞ be the polynomial of ith order,
which is recursively defined as

fiðxÞ ¼ x
Xi�1
j¼0

i

j

 !
fjðxÞ and f0ðxÞ ¼ 1: ð8aÞ

We have f1ðxÞ ¼ x; f2ðxÞ ¼ x þ x2; f3ðxÞ ¼ x þ 6x2 þ
6x3; f4ðxÞ ¼ x þ 14x2 þ 36x3 þ 24x4: The escape prob-
ability of type i is:

xi ¼ xmuhim fhim
ðaÞ: ð8bÞ

Here, a ¼ R=ð1� RÞ and xm ¼ 1� 1=Rm: The Hamming
distance between sequences i and m is denoted by him:
Table 1

99% probability of success. The number of mutational steps is denoted

by m: R denotes the basic reproductive ratio of types 0;y;m � 1

during exertion of the selection pressure. The fitness values of types

1;y;m before the onset of treatment is denoted by w: The table shows
the dependence of the population size compatible with a 99%

probability of success on R and w

N99

R ¼ 0 R ¼ 0 R ¼ 0:9 R ¼ 0:9
m w ¼ 0 w ¼ 0:9 w ¼ 0:01 w ¼ 0:9

1 102 10 10 5

2 3	 105 5	 103 5	 103 2	 103

3 8	 108 2	 106 2	 106 5	 105

4 1	 1012 4	 108 5	 108 9	 107

5 2	 105 7	 1010 1	 1011 2	 1010
3. Populations

We can also calculate the probability of non-extinc-
tion starting from a heterogeneous population of size N:
Let us revisit the example of Section 2.5.1 with four
genotypes denoted by 00, 01, 10 and 11. Suppose the
relative abundances of the individual types in the initial
population are given by x00;x01;x10 and x11: The
probability of non-extinction of the population is

P ¼ 1� exp½�Nðx00x00 þ x01x01 þ x10x10 þ x11x11Þ�:

The initial distribution of genotypes could be the
consequence of a mutation selection balance. If we
consider the situation of an infectious agent attempting
to invade a new host, then the xi values could be
determined by mutation-selection forces in the original
host. Suppose the mutation rates are intrinsic to the
infectious agent and are, therefore, the same in the old
and in the new host. Suppose wi denotes the fitness of
type i in the old host. Assume w00 > 1; but w01;w10;w11

are all less than 1. Hence 00 is the wild-type sequence
with the highest fitness in the original host, but in the
new host only 11 is a sustainable replicator. We want to
calculate the probability that a population of size N will
succeed in infecting the new host. Let us introduce the
parameters bi ¼ 1=ð1� wiÞ: The equilibrium distribution
in the old host is approximately given by

x00 ¼ 1;

x01 ¼ u2b01;

x10 ¼ u1b10;

x11 ¼ u1u2b11ð1þ b01 þ b10Þ;

(see Appendix B for the derivation in general cases).
These are leading order terms in the expansion of small
mutation rates. With this initial distribution the prob-
ability of escape of a population of size N is

P ¼ 1� expð�NCu1u2Þ: ð9aÞ

The risk factor, C; is given by

C ¼ a00ð1þ a01 þ a10Þ þ a01b01 þ a10b10

þ b11ð1þ b01 þ b10Þ: ð9bÞ

3.1. Quasispecies with sequence length n

Let us now consider the situation of Section 2.5.2. In
the original host the wild-type sequence is 00..0; its
fitness is 1. All other sequences have fitness, wo1: Let
b ¼ 1=ð1� wÞ: The fraction of sequence i in the initial
population is

xi ¼ uh0i fh0i
ðbÞ; ð10Þ

where fiðxÞ are the very same polynomials as in Eq. (8a).
The escape probability can be written as

P ¼ 1� exp½�NCnunxm�: ð11aÞ

The risk factor is given by

Cn ¼
Xn

i¼0

n

i

 !
fn�iðaÞfiðbÞ: ð11bÞ

See Appendix C for derivation. Table 1 shows examples
of the dependence of the population size compatible
with a 99% probability of success on basic reproductive
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ratios during the selection pressure and fitness values
prior to the onset of the selection pressure.
4. Extensions

4.1. (Almost) Neutral intermediate steps

We have analysed cases where all replicators could be
clearly separated into escape mutants with Ri > 1 and
non-escape mutants with Rio1: The calculations are
valid if all basic reproductive ratios are either less than
1� O

ffiffiffi
u

p� 	
or greater than 1þ O

ffiffiffi
u

p� 	
(see Appendix A

for detail). Under this assumption, all escape mutants
have escape probability xi ¼ 1� 1=Ri; which is deter-
mined only by their own reproductive ratio and is
independent of mutation rates. For non-escape mutants,
we trace the shortest paths leading to escape mutants,
calculate their values, and the sum over all such paths
provides the probability of escape.
When both the mutation rate of type j and the escape

probability of cell types of the destination of the mutant
are small, we can derive the following formula (see
Appendix A):

xj ¼ �
1

2aj

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð2ajÞ
2
þ
X

iaj
ujixi

s
; ð12Þ

As before we have aj ¼ Rj=ð1� RjÞ: Formulas xi ¼
ai

P
jai uijxj and xi ¼ 1� 1=Ri are two limiting cases of

Eq. (12) when Ri is clearly away from 1. If Ri is close to
1, we must use Eq. (12). The escape probability xi does
not satisfy the simple matrix formula, but it can be
expressed using a nonlinear function of the sum of
mutation rates and escape probability. In particular, if
there is a chain of mutations that lead to the escape
mutant m; and all the intermediate types are neutral
(R0 ¼ R1 ¼ R2 ¼ ? ¼ Rm�1 ¼ 1; and Rm > 1), we have

x0 ¼ u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
um�1xm

pqr
ð13Þ

and xm ¼ 1� 1=Rm instead of Eq. (4).

4.2. Connection to tunneling

In branching process models, the total number of
individuals is not regulated. If the population does not
go to zero, it will increase indefinitely (Athreya and Ney,
1972). In some applications, however, the total number
of cells or individuals can be regulated to maintain a
finite value. An example is given by the interesting
connection between the results of this paper and
stochastic tunneling of cancer progression (Nowak
et al., 2002; Komarova et al., 2002, 2003; Michor et al.,
2003; Iwasa et al., 2003a, b). Consider a population of N

cells following a Moran process. Initially all cells are of
type 0 and have relative fitness 1. They mutate to type 1
cells with fitness R1p1: Type 1 cells mutate to type 2
cells with fitness R2 > 1: The mutation rates from 0 to 1
and from 1 to 2 are given by u1 and u2; respectively. We
are interested in the probability that type 2 cells have
taken over the population by time t: If the population
size N is not very large, type 1 cells will be generated by
mutation and eventually be fixed in the population.
Subsequently type 2 cells will be produced and become
fixed. The population moves from all-0 to all-1 to all-2.
If, on the other hand, the population size is large, then
type 2 cells will emerge before type 1 cells reach fixation:
type 1 mutants temporarily increase and generate a type
2 cell before becoming extinct again. The system moves
from all-0 to all-2 without ever visiting all-1. This
process is called stochastic tunneling. The rate of
tunneling can be derived from the branching process
calculations shown in this paper. The system moves
from state all-0 to all-2 at rate Nu1x1: The rate of
production of type 1 mutants is given by Nu1: If R1o1;
then the probability of non-extinction of a lineage
starting from a single type 1 mutant is given by x1 ¼
R1=ð1� R1Þu2x2: If R1 ¼ 1; then this probability is given
by x1 ¼

ffiffiffiffiffiffiffiffiffi
u2x2

p
: The probability of non-extinction of a

lineage starting from a single type 2 mutant is given by
x2 ¼ ð1� 1=R2Þ=ð1� 1=RN

2 Þ: For large N; this becomes
x2 ¼ 1� 1=R2: For the range of validity of these
expressions and correction terms we refer to Iwasa
et al. (2003a, b).
There is a connection between tunneling and the

concept of ‘hitch-hiking’. If type 1 is deleterious, then it
is doomed to extinction unless it gets a lift from the
advantageous type 2 mutation. In population genetics,
this effect is called hitch-hiking (De Visser, 2002). It is
important if two loci are strongly linked. Hitch-hiking is
more important in asexual populations or in the absence
of recombination (Charlesworth, 1978). One of the reasons
why tunneling is important in the somatic evolution of
cancer is the absence of meiotic recombination.

4.3. Synchronized generations

We have discussed continuous-time branching pro-
cesses where individuals die and reproduce at random
times. We can also describe populations with discrete
and non-overlapping generations. Individuals reproduce
independently of each other and are replaced by their
offspring. Individuals produce a number of offspring
that follows a Poisson distribution with mean R: The
escape probability of a lineage starting from a single
type is the largest solution of the transcendental
equation

�lnð1� xÞ ¼ Rx: ð14Þ

The solution is positive if R > 1; and zero if Rp1: This
property is the same as for the corresponding escape



ARTICLE IN PRESS
Y. Iwasa et al. / Journal of Theoretical Biology 226 (2004) 205–214 211
probability, 1� 1=R; in the continuous time branching
process. There are, however, some differences. In the
continuous time branching process, the number of
offspring of one individual has a variance larger than
the Poisson distribution with the same mean, and hence
the effect of random drift (stochasticity caused by small
population size) is stronger, making selection less
effective. We can also develop the multi-type branching
process for discrete generations (Iwasa et al., 2003a, b).
All the equations remain the same, except the prob-
ability of non-extinction of the escape mutant is given by
Eq. (14) instead of 1� 1=R: In the discrete time model,
exactly the same results as for the continuous time
model can be obtained, if the number of offspring
follows a geometric distribution rather than a Poisson
distribution. Hence, the main difference between con-
tinuous and discrete time branching processes comes
from the probability distribution for the number of
offspring produced by a single individual in its lifetime.
5. Discussion

Branching process models have been used in a
number of different contexts in biology. In ecology,
for example, branching processes have been developed
to calculate the success of invasion of a species into a
new habitat, but without consideration of evolutionary
change. Environmental fluctuations can lead to time
dependent fitness (Iwasa and Mochizuki, 1988). If the
environment fluctuates according to a stationary pro-
cess, then the population size is described by a doubly
stochastic process, where the population size follows a
branching process with temporally fluctuating growth
rate (Haccou and Iwasa, 1995).
Branching process models have also been used for

explaining the age-dependent incidence of cancer
(Knudson, 1971; Moolgavkar and Knudson, 1981;
Little, 1995; Luebeck and Moolgavkar, 2002; Little
and Wright, 2003). During tumorigenesis, cells receive
multiple mutations and undergo clonal expansion.
Usually, these models are analysed numerically. Here
we provide analytical solutions based on the assumption
that mutation rates are small.
In the present paper, we calculate evolutionary escape

dynamics for populations struggling for survival under a
strong selection pressure. This selection pressure can be
exerted by an immune system combating infectious
agents, by chemotherapy directed against cancer cells,
by hostile or changing environments complicating the
(re)populization of invading or persisting organisms.
Initially, the population can be heterogeneous: diverse
genetic backgrounds and partial as well as full escape
mutants can be present at the time of onset of the
selection pressure. The initial distribution can be caused
by a mutation-selection processes. The probability of
escape is shaped by the following parameters: the total
population size, the mutation rates of individuals within
the population, the basic reproductive rates of indivi-
duals during the exertion of the selection pressure, and
the fitness values of individuals prior to the onset of the
selection pressure. With our theory, we can quantify
how escape depends on pre-existence versus emergence
of resistant mutants.
Our theory can be applied to the spread of replicating

organisms both in single individuals and in host
populations. It holds for arbitrarily complex mutational
networks and fitness landscapes. The fitness values of
individual mutants subject to selection pressure can be
time dependent. The model can be extended to include
spatial compartments with different extinction prob-
abilities. There can also be latently infected cells or
latent cancer cells such as cancer stem cells. However,
there are some limitations to our approach. The basic
assumption of multi-type branching processes is inde-
pendence of the lineages that accumulate mutations.
Hence, mutational mechanisms such as recombination
and horizontal gene transfer as well as frequency- or
density-dependent fitness have to be excluded. All of
these phenomena can be important in certain situations
of escape dynamics. Our study provides a general
analytical theory for the evolutionary dynamics of
escape. It is a point of departure for more specific and
complex models that deal with particular situations
arising in populations under a strong selection pressure.
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Appendix A

A.1. Escape probability in general cases

We start with the generating function for a multi-type
branching process:

gjðz1; z2;y; zn; tÞ ¼ E½zN1ðtÞ
1 z

N2ðtÞ
2 ;y; zNnðtÞ

n jNið0Þ ¼ dij�;

ðA:1Þ

where z1; z2;y; zn are positive constants satisfying
0ozip1 for i ¼ 1; 2; 3;y; n: The average is calculated
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for the trajectories starting with a single cell of type j

at time t ¼ 0: The extinction probability is obtained
by setting the parameters z1; z2;y; zn equal to zero:
gjð0; 0;y; 0;NÞ¼Pr½N1ðNÞ¼N2ðNÞ ¼ ? ¼ NnðNÞ ¼
0jNið0Þ ¼ dij �:We consider the case in which there is only
a single escape type m; Rm > 1; all the others are sensitive
to the exerted selection pressure, Rio1 for iam:
Here the fitnesses are clearly different from 1 (see the
inequality condition given in Eq. (3a)). Let uij be the
mutation rate from type i to type j:
We consider events occurring in a short time

interval of length Dt; and expand the generating
function as

gjðz; t þ DtÞ ¼Dt
1þ RiDtgjðz; tÞ
Xn

i¼1

ujigiðz; tÞ

( )

þ ð1� ð1þ RiÞDtÞgjðz; tÞ:

Here we used

E z
N1ðtÞ
1 yzNnðtÞ

n

one cell of type i and

another of type j at t ¼ 0

�����
" #

¼ E z
N1ðtÞ
1 yzNnðtÞ

n

one cell of type i

at t ¼ 0

�����
" #

	 E z
N1ðtÞ
1 yzNnðtÞ

n

one cell of type j

at t ¼ 0

�����
" #

¼ giðz; tÞgjðz; tÞ

and

E½zN1ðtÞ
1 yzNnðtÞ

n jtwo cells of type i at t ¼ 0�

¼ E z
N1ðtÞ
1 yzNnðtÞ

n

one cell of typei

at t ¼ 0

�����
" #2

¼ giðz; tÞ
2:

In the limit of very small Dt; we have

d

dt
gj ¼ ð1� gjÞ þ ujmðgm � 1Þ þ

X
iaj
iam

ujiðgi � 1Þ

8><
>:

þ ðgj � 1Þ 1�
X
iaj

uji

 !9>=
>;gjRj :

By setting xj ¼ 1� gj and t-N; we have

xj ¼ ujmxm þ
X
iaj
iam

ujixi þ 1�
X
iaj

uji

 !
xj

8><
>:

9>=
>;ð1� xjÞRj ;

which can be rewritten as

1

Rjð1� xjÞ
� 1

� �
xj ¼ ujmxm þ

X
iaj
iam

ujixi �
X
iaj

ujixj :

ðA:2Þ
We here assume that all the mutation rates ðuijÞ are
small, and of the order of magnitude OðuÞ: The sumP

iaj ujixj is of a higher order with respect to u than the
terms on the left-hand side, and can therefore be
neglected. The first and second term on the right-hand
side are of OðuÞ or smaller. Then we can derive

xj ¼
1

2
�

1

Rj

� 1

� �
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Rj

� 1

� �2

þ4y

s2
4

3
5; ðA:3Þ

where y ¼ ujmxm þ
P

iaj
iam

ujixi; by neglecting terms of

higher order with respect to y:
When one of the two terms in the square root of

Eq. (A.3) is much larger than the other, we can simplify
the expression as follows. We have three cases:

Case I: advantageous. If Rj > 1 and 1� 1=Rjb2
ffiffiffi
y

p
;

we have

xj ¼ 1�
1

Rj

þ ½smaller terms�: ðA:4aÞ

Here the escape probability xj is of Oð1Þ; and it is
independent of the mutation rate.

Case II: nearly neutral. If Rj is close to 1, or more
exactly j1� 1=Rj j52

ffiffiffi
y

p
; then we have

xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ujmxm þ

X
iaj
iam

ujixi

r
þ ½smaller terms�; ðA:4bÞ

Case III: deleterious. If Rjo1 and 1=Rj � 1b2
ffiffiffi
y

p
; we

have

xj ¼
Rj

1� Rj

ujmxm þ
X
iaj
iam

ujixi

0
B@

1
CAþ ½smaller terms�:

ðA:4cÞ

These three cases correspond to the three cases of Eq. (3)
in the main text when there are only two cell types.
In the following, we consider the case in which

mutation rates are very small, and the fitnesses of
mutants are classified to be either advantageous or
deleterious. The escape probability of advantageous
mutants is independent of mutation rates and of the
order of 1. We consider the case in which there is a single
escape mutant, denoted by m; and n deleterious mutants
that are connected with each other and with the escape
mutant m by rare mutation. Let ðx1; x2;y; xnÞ

T be a
column vector of the escape probabilities; the superfix T
indicates transposition of a vector or a matrix. We also
introduce a diagonal matrix,

A ¼ diag
R1

1� R1
;

R2

1� R2
;y;

Rn

1� Rn

' (
and the matrix of mutation rates, U ¼ fuijg; where the
diagonal element is taken to be 0. Eq. (A.4c) becomes

ðx1; x2;y; xnÞ
T ¼Afðu1m; u2m;y; unmÞ

Txm

þ Uðx1; x2;y; xnÞ
Tg; ðA:5Þ
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which is rewritten as Eq. (5) in the main text. After
matrix calculation, we have the following results:

ðx1; x2;y; xnÞ
T

¼ ðA�1 � UÞ�1ðu1m; u2m;y; unmÞ
Txm

¼ ðA þ AUA þ AUAUA þ AUAUAUA þ?Þ

	 ðu1m; u2m;y; unmÞ
Txm: ðA:6Þ

By examining the term on the right-hand side, we get the
interpretation of the contribution of different paths with
the waiting factor given by Eq. (6c) in the main text.
Appendix B

B.1. Distribution prior to infection

The distribution prior to infection is determined as a
result of the mutation-selection balance. We consider
the case in which there is a single wild type individual,
i ¼ 0; with fitness 1 and n mutants, i ¼ 1; 2;y; n: Here
the mutation rates among strains are the same as
those after infection, but the selection coefficients are
different.
Type i mutant has fitness wi; which is less than 1 for

non-wild types ði ¼ 1; 2; 3;y; nÞ: The wild type has
fitness w0 ¼ 1: Mutation rates of different types are the
same as those after infection, uij : Let xi be the
abundance of type i mutants. We have

dxi=dt ¼ � ð1� wiÞxi þ
Xm

j¼1

xjuji þ u0ix0

þ ½small terms�; ðB:1Þ

where the small term includes contribution from the
mutation out of the focal type.
Let x ¼ ðx1 x2 y xmÞ

T be the column vector for the
equilibrium distribution. At equilibrium, it satisfies

0 ¼ �xB�1 þ xU þ x0ðu01 u02 y u0mÞ;

where

B ¼ diag
1

1� w1
;

1

1� w2
;y;

1

1� wm1

' (

is a diagonal matrix. After using some matrix algebra,
we have

x ¼ x0ðu01 u02 y u0mÞðI � BUÞ�1B

¼ x0ðu01 u02 y u0mÞðB þ BUB þ BUBUB þ?Þ:

ðB:2Þ

Considering x0B1; Eq. (B.2) is rewritten as

xi ¼
X

q:0-i

*vðqÞ; ðB:3Þ

where the sum is calculated over all the paths connecting
the wild type to type i; such as q : 0 ¼ k1-k2-?-
km ¼ i: The value of the path is defined as *vðqÞ ¼
uk1k2bk2uk2k3bk3yukm�1km
bkm

with bi ¼ 1= ð1� wiÞ: If all
mutational steps are of OðuÞ; xi is of Oðudð0;iÞÞ where
dð0; iÞ is the Hamming distance between the wild type
and the focal type i; or the number of sites differing
between them.
Appendix C

C.1. Formula for n-bits string

We here consider the case in which genotypes are
expressed as i-bits strings, such as 000y0; 100..0,
010,000..0, and 111..1. Among these, the all-0 string is
the wild type, and the all-1 string is the escape mutant.
The fitness of each non-wild type is a common constant,
wo1; the fitness of non-escape mutants also is a
common constant, Ro1: In this case, we can calculate
the total risk. We first derive a recursive formula based
on the number of bits i: Let xi

0 be the escape probability
for the wild type 0000..00 when the total length of bit
sequence is i: The first step of the mutation may include
changes at either a single locus or multiple loci. The
result of such a change is a sequence of j 0’s and i � j 1’s.

There are i
j

) *
possible sequences of this kind. The escape

probability of these cell types is equal to x j
0 ; or equal to

one when the sequence consists of j bits. From

Eq. (A.5), the escape probability xi
0 is the sum of the

products of a fitness factor, a; the mutation rate, and the
escape probability of the resulting cell type. Taken
together, we have

xi
0 ¼ a

Xi�1
j¼0

i

j

 !
ui�jx j

0 : ðC:1Þ

By setting xi
0 ¼ uifiðaÞð1� 1=RmÞ; we get for fiðaÞ:

fiðaÞ ¼ a
Xi�1
j¼0

i

j

 !
fjðaÞ:

We also note that x00 ¼ 1� 1=Rm; which is the escape

probability for the escape mutant. This produces
f0ðaÞ ¼ 1: Hence the polynomial fiðxÞ is determined
recursively as specified by Eq. (10b).
Consider the initial distribution with n-bit strings in

which the wildtype, 000y00; has fitness 1 and all
mutants have fitness wo1: Following a procedure
similar to the calculation above, we get

xi ¼
Xi�1
jo0

xj

i

j

 !
ui�jb;

where b ¼ 1=ð1� wÞ: With x0B1; we can derive
xi ¼ x0u

ifiðbÞ: From this we can obtain Eq. (10).
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