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Identification of optimal dosing schedules of
dacomitinib and osimertinib for a phase I/II trial in
advanced EGFR-mutant non-small cell lung cancer
Kamrine E. Poels 1,2, Adam J. Schoenfeld3, Alex Makhnin3, Yosef Tobi 3, Yuli Wang4,

Heidie Frisco-Cabanos5, Shaon Chakrabarti1,2,6, Manli Shi4, Chelsi Napoli5, Thomas O. McDonald1,2,6,7,

Weiwei Tan8, Aaron Hata5,9,10, Scott L. Weinrich4, Helena A. Yu3✉ & Franziska Michor 1,2,6,7,9,11✉

Despite the clinical success of the third-generation EGFR inhibitor osimertinib as a first-line

treatment of EGFR-mutant non-small cell lung cancer (NSCLC), resistance arises due to the

acquisition of EGFR second-site mutations and other mechanisms, which necessitates alter-

native therapies. Dacomitinib, a pan-HER inhibitor, is approved for first-line treatment and

results in different acquired EGFR mutations than osimertinib that mediate on-target resis-

tance. A combination of osimertinib and dacomitinib could therefore induce more durable

responses by preventing the emergence of resistance. Here we present an integrated com-

putational modeling and experimental approach to identify an optimal dosing schedule for

osimertinib and dacomitinib combination therapy. We developed a predictive model that

encompasses tumor heterogeneity and inter-subject pharmacokinetic variability to predict

tumor evolution under different dosing schedules, parameterized using in vitro dose-response

data. This model was validated using cell line data and used to identify an optimal combi-

nation dosing schedule. Our schedule was subsequently confirmed tolerable in an ongoing

dose-escalation phase I clinical trial (NCT03810807), with some dose modifications,

demonstrating that our rational modeling approach can be used to identify appropriate dosing

for combination therapy in the clinical setting.
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Activating EGFR mutations are present in 15% of all non-
small cell lung cancers and identify the subset of lung
cancers that are sensitive to EGFR tyrosine kinase inhi-

bitors (TKIs)1. Despite the fact that most patients with EGFR-
mutant (EGFR-m) NSCLC have robust responses to EGFR TKIs,
the majority ultimately develop disease progression. Osimertinib,
a third-generation, irreversible EGFR TKI, has become a standard
of care first-line treatment for patients with EGFR-mutant lung
cancers. Osimertinib was initially approved to address acquired
EGFR T790M, the most frequent mechanism of acquired resis-
tance to earlier generation EGFR TKIs, and has since demon-
strated superior efficacy compared to first-generation EGFR TKIs
in the upfront setting, with improved progression-free and overall
survival2–4. The mechanisms of acquired resistance to upfront
osimertinib are still emerging, but acquired EGFR second-site
mutations at EGFR C797S (the binding site of osimertinib to
EGFR) are some of the commonly identified causes5,6.

Dacomitinib is a pan-HER tyrosine kinase inhibitor that has
also demonstrated efficacy as a first-line treatment for patients
with EGFR-mutant lung cancers7. In the ARCHER 1050 study,
dacomitinib was compared to gefitinib as the first-line treatment8,
resulting in a median progression-free survival of 14.7 months for
dacomitinib compared to 9.2 months for gefitinib, leading to
dacomitinib’s approval in this setting. The most common
mechanism of resistance to first- and second-generation EGFR
inhibitors is the acquisition of a second-site mutation, EGFR
T790M9. We, therefore, hypothesized that dacomitinib and osi-
mertinib combination therapy might be an effective first-line
treatment for patients with advanced EGFR-mutant lung cancers
by preventing the spectrum of acquired EGFR mutations
observed. Specifically, osimertinib would be effective in the pre-
sence of EGFR T790M while dacomitinib would be effective in
the setting of EGFR C797S. This hypothesis is consistent with
previous studies demonstrating that combination targeted
therapies can delay the emergence of acquired resistance in
EGFR-mutant lung cancers10,11.

The identification of an optimal drug-dosing schedule of tar-
geted therapy combinations remains a challenge due to a large
number of possible drug administration schedules as well as
overlapping toxicity profiles. To address this problem, several
computational strategies have been proposed12–15. Most
approaches have adopted a tumor evolution model with resistant
cell clones in different patient groups13,16,17, yet few account for
the complex pharmacokinetics and the inter-patient variability of
drug concentrations identified from large patient cohorts. Here
we developed a predictive modeling platform that encompasses
tumor heterogeneity and inter-subject variability of plasma drug
concentrations to predict tumor evolution under different treat-
ment schedules. Using this approach, we identified an
osimertinib–dacomitinib combination strategy predicted to
maximally decrease tumor volume while resulting in a tolerable
toxicity profile, and incorporated these results into an ongoing
phase 1 clinical trial (NCT03810807)18 described herein.

Results
A predictive modeling framework evaluating tumor responses
under different dosing strategies. To investigate the effectiveness
of different combination dosing strategies, we designed a compu-
tational modeling framework to predict tumor cell number and
composition during treatment with dacomitinib and osimertinib
combination therapy (Fig. 1a and “Methods” section). The mod-
eling framework considers a change in the concentrations of mul-
tiple drugs over time while taking into account inter-patient
variability in pharmacokinetics as well as tumor clonal prevalence—
i.e., the tumor cell composition over time. The first constituent of

our modeling ensemble is the tumor clonal prevalence model,
which predicts the number of cells sensitive or resistant to each
individual drug over time. The model is based on a multi-type
stochastic birth and death process (Fig. 1b). In this model, sensitive
cells can give rise to drug-resistant cells with a specified probability
per cell division for each resistance mechanism. Each cell lives for a
random time period until either a mitosis or apoptosis event hap-
pens; the birth and death rates of a cell depend on the cell’s
mechanism of resistance as well as the concentration of each drug
present at the time of cell division. The second constituent of the
modeling framework, shown in Fig. 1a, is made up of population
pharmacokinetic models, which allow capturing the variability of
drug levels in the plasma of patients as well as the absorption and
elimination kinetics over time. As the drug concentration in plasma
increases, tumor cells proliferate at a slower rate, thereby making
birth rates dependent on the drug concentration. The last con-
stituent of the modeling ensemble is a pre-specified toxicity con-
straint, providing information on how much of each drug is
tolerated in the clinic without dose-limiting side effects.

Viability assays of EGFR-m cell lines under varying drug
concentrations. In order to parameterize the computational
modeling platform outlined above, we obtained proliferation rates
from CellTiter-Glo (CTG) experiments using PC9 parental cell
lines and drug-resistant PC9-derived cell lines harboring different
mechanisms of acquired resistance (Supplementary Fig. S1 and
“Methods” section). Most drug-resistant cell lines were generated
by extended treatment with osimertinib or dacomitinib until
resistance developed, while the PC9 C797S cell line was engi-
neered (see “Methods” section). For the viability experiments,
cells were treated with various doses of osimertinib and daco-
mitinib and observed for 24, 48, and 72 h, before cell plates
reached confluency (Supplementary Fig. S1 and “Methods” sec-
tion). Cell counts were obtained using calibration curves from the
CTG experiments for each condition (Supplementary Fig. S2 and
“Methods” section). Similar experiments were performed with the
drug-resistant cell lines. We then obtained the growth rates of
individual cell types during treatment with specific drug con-
centrations as the slope of a linear regression of the cell count on
the log scale against time. PC9 cells, which harbor the EGFR exon
19 deletion, were found to be sensitive to both drugs, showing a
significant decrease in growth rate at 10 nM osimertinib (differ-
ence in slopes of 0.0092 log-cells h−1 between 5 and 10 nM osi-
mertinib, p= 0.0019) and 0.5 nM dacomitinib (difference in
slopes of 0.01685 log-cells h−1 between 0.5 and 0.343 nM daco-
mitinib, p < 0.0001, Fig. 1c).

Comparable to previous findings14, we observed that some cells
with mutations conferring resistance had a lower fitness in the
absence of treatment compared to the parental cell line (Fig. 1c
and Supplementary Fig. S2). PC9-DRH cells, which harbor both
the single-mutant (exon 19 del) and double-mutant (exon 19 del/
T790M) alleles, were found to be resistant to dacomitinib even at
250 nM, but responded to osimertinib at 37 nM and higher
concentrations (−0.007 log-cells h−1 decrease in slope, p=
0.017), agreeing with the IC50 value of 51.2 nM (Supplementary
Fig. S3a), and consistent with the correlation of viability
sensitivity with suppression of downstream signaling and
induction of apoptosis (Supplementary Fig. S3c). PC9R-NRAS
cells, which harbor the NRAS-Q61K mutation, were resistant to
both drugs since the cell count increased at a non-significantly
different rate as that of the control (p= 0.9768, Supplementary
Fig. S2b). Lastly, PC9 C797S cells were sensitive to dacomitinib
starting at 27 nM (0.0119 log-cells h−1 decrease in slope
compared to 10 nM, p= 0.020) but were resistant even to high
doses of osimertinib (p= 0.353, Fig. 1b), in line with an
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independent assessment of IC50 values of 11.7 nM and >1mM
(Supplementary Fig. S3a), respectively. This finding is also
consistent with previous reports comparing sensitivity and
suppression of downstream signaling in response to other second
and third-generation EGFR inhibitors19. Based on this data, we
assessed whether there was a synergistic or antagonistic
interaction between osimertinib and dacomitinib with the
methods of isoboles and observed no significant interaction
(p= 0.8517 for PC9 cells, Supplementary Fig. S3b)20.

Using this data, we found that cell types sensitive to one or
more drugs had a growth rate that displayed a sigmoidal
relationship with the concentration of the effective drug, whereas
cells resistant to treatment exhibited a constant growth rate across
drug concentrations. We then estimated the growth rates for all
cell types during treatment with one or both drugs (Fig. 1c and
Supplementary Table S1). These estimated growth rates of each
cell type were used to build a dose-response landscape across
concentrations of both drugs (Fig. 1d and Supplementary Figs.
S5–S8).

Previous experiments suggested that the death rate of PC9 cells
treated with erlotinib, a first-generation EGFR TKI, was almost
unaffected by increasing drug doses14,21. Therefore, we consid-
ered that death rates of PC9-derived cells were constant and only
the birth rate was dependent on drug concentration. Nevertheless,
our results were robust even under the assumption of a death rate
that increased with the drug concentration (Supplementary
Fig. S4).

Simulation of population pharmacokinetic models. Population
pharmacokinetic (popPK) models are complex dynamical sys-
tems that describe a drug’s concentration throughout the body
over time (see “Methods” section). An essential element of popPK
models is inter-subject variability in pharmacokinetic parameters,
which allows users to assess the variability in drug concentration
between subjects. To correctly predict drug concentrations over
time in our modeling ensemble, we utilized popPK models for
osimertinib and dacomitinib; both models are specified as a two-
compartment system with first-order absorption kinetics
(Fig. 2a). The popPK model for dacomitinib was provided by
Pfizer22. Major predictors of PK variability of dacomitinib were
body weight, serum albumin level, and ethnicity, but the elim-
ination of dacomitinib from the central and peripheral com-
partments was noticeably slower than that of osimertinib
(Fig. 2b). The popPK model for osimertinib23 was built using data
from two NSCLC studies and one small study of healthy patients
to whom osimertinib was administered orally (Fig. 2c). The daily
dose of osimertinib varied from 20 to 240 mg in almost half of the
patients in the three combined studies, whereas the rest of the
patients received 80 mg daily. Major predictors of PK variability
were bodyweight, baseline serum level, and ethnicity.

Osimertinib and one of its metabolites, AZ5104, are best
represented by a two-compartment PK model23. AZ7550, a
metabolite of osimertinib, exhibited very similar potency and
profile as osimertinib against mutant and wild-type cell lines
tested for inhibition of EGFR phosphorylation, whereas AZ5104

Fig. 1 Overview of the computational modeling framework and its parameterization. a The model ensemble consists of a tumor evolution model of
multiple cell types, population drug pharmacokinetic model, and toxicity constraints and can be used to identify the most favorable therapy schedules for
osimertinib and dacomitinib combination treatment. The waterfall plot represents predicted patient responses for a given dosing regimen. b The tumor
evolution model. Each resistance mechanism arises in a one-step process. Each cell type, i, has its own drug-dependent birth rate and constant death rate,
biðCðtÞÞ and di , respectively. The drug concentrations of dacomitinib, CDðtÞ, and osimertinib, COðtÞ, were modeled as a function of time t. The vector of two
drug concentrations, C tð Þ ¼ ½CD tð Þ;COðtÞ�, served as the input for the multivariate birth function, bi. Under a particular drug-dosing schedule, the rates are
therefore time-dependent. A mutation from the sensitive cell type to type i occurs at rate μ0i per cell division. c Total cell counts from CellTiter Glow (CTG)
experiments during osimertinib (gray-scale lines) and dacomitinib treatment (red-scale lines). The slope of each line provides the estimated growth rate for
a given cell type and drug concentration. Source data are provided as a Source Data file. d Birth rates of cells during combination therapy. Points represent
the estimated growth rates from c minus death rates and the contour is the predicted birth rate as a function of dacomitinib and osimertinib concentration.
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harbored somewhat greater potency against ex19del, T790M, and
wild-type EGFR cell lines24. However, the metabolites’ concen-
trations are much lower than that of the parental molecule, and
hence we used only the central compartment concentration of
osimertinib in subsequent modeling.

Using these popPK models, we simulated drug concentrations
to predict the proliferation rates of individual cell types as a
function of time (Fig. 2d and “Methods” section). As a
consequence, the growth rate of each cell type changes over time
as the drug concentration varies in the patient due to metabolism
and administration of the next dose.

Toxicity constraints. To avoid toxicity events, we obeyed dose
limits based on the following reasoning. The MTD of dacomitinib
was found to be 45 mg daily in a phase I study25. In later trials
with planned doses of 45 mg each day (QD), the majority of
patients received dose reductions or discontinued treatment as a
result of adverse effects, corroborating that this is a true MTD of
dacomitinib26. From the results of these trials, we examined only
drug combinations with dacomitinib at or below 320 nM, which
approximates the typical plasma concentration caused by 45mg
QD of dacomitinib (196 nM total drug exposure, the average
concentration in the dosing interval, once repeated dosing has
reached steady state). The recommended dose of osimertinib as a

single agent is 80 mg QD, but osimertinib has been tolerated
at the 160mg QD dose even when administered in
combination27–30. Therefore, we allowed a maximum dose of
osimertinib of 660 nM, which approximates the typical plasma
concentration resulting from 160 mg QD of osimertinib (933 nM
total drug exposure, the average concentration in the dosing
interval once repeated dosing has reached steady state).

In silico clinical trials identify an optimal dosing schedule.
Using the computational modeling ensemble outlined above, we
then performed in silico clinical trial simulations for a large
number of patients for 8 weeks, which is equivalent to two
treatment cycles. In order to investigate the long-term outcomes
of these trials, we also performed simulations for a year for the
same simulated patients. Each simulated patient has unique PK
parameters, chosen from distributions as outlined in the “Meth-
ods” section, and we performed both short-term and long-term
simulations for N= 1000 patients to assess the impact of the PK
parameters’ variability on treatment performance (Fig. 3a). The
trial cohorts consisted of dose escalations using a 3+ 3 design of
a phase I study to identify the recommended phase 2 dose. At
each dose level, we compared the outcomes in the patient
simulations across different concentrations of both osimertinib
and dacomitinib that are predicted to lead to comparable toxicity

Fig. 2 Drug pharmacokinetics with inter-subject variability and effects on tumor cell fitness. a Schematic of a two-compartment model of drug
concentration over time throughout the body. Output concentrations in nanomolars from a simulation of 30mg QD of dacomitinib (b) and 40mg QD of
osimertinib (c) in 1000 patients. Blue and red lines correspond to drug concentration in the central (CDðtÞ and COðtÞ), and peripheral, (PDðtÞ and PDðtÞ),
compartment, respectively. Solid lines are median concentrations and shaded areas represent a 95% confidence interval. d Birth rates of four cell types
during dosing with 30mg QD dacomitinib and 40mg QD osimertinib in one simulated individual. Doses are given every 24 h starting at hour zero.
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profiles. Because both dacomitinib and osimertinib are adminis-
tered orally and are only available in specific quantities, we
evaluated a restricted number of doses consistent with those
constraints, while freely altering the timing and order of drug
administration.

To accurately capture the possibility of pre-existing resistance
as well as variability in the tumor volume at the time of diagnosis,
for each simulated patient, we sampled clone sizes of each cell
type from distributions informed by clinical information5,14,31–36.
Thus, each patient had a unique total tumor cell number as well
as the frequency of individual sensitive and resistant clones at the
start of treatment (Fig. 3b and Supplementary Fig. S9, “Methods”
section). Each patient was then subjected to all considered
combination schedules, and the efficacy of one schedule relative
to another was assessed by estimating the relative improvement.
We defined the relative improvement of schedule B compared to
schedule A at time t as:

RIðB;AjtÞ ¼ NA tð Þ � NB tð Þ
NA tð Þ ð1Þ

where NsðtÞ is the total number of tumor cells at time t under
dosing schedule s. Because both drugs of interest are orally
administered and doses are discrete, we investigated 15 mg (QD;
twice a day, BID; or three times a day, TID), 30 mg QD, and 45
mg QD of dacomitinib in combination with 40 mg (QD or BID),
and 80 mg (QD or BID) of osimertinib, the total dose depending
on the dose-escalation level and previous clinical knowledge. The
dose-escalation schedules that would be conventionally proposed

for a phase I/II combination study based on clinical experience
would start with 15 mg QD of dacomitinib with 40 mg QD of
osimertinib and if appropriate, escalate to 45 mg QD of
dacomitinib with 80mg QD of osimertinib (“conventional” in
Fig. 3c).

Our modeling ensemble identified superior dose-escalation
dose levels; we identified the schedule of initiating therapy with
15 mg QD of dacomitinib and 40 mg QD of osimertinib and if
appropriate, escalating to 30 mg QD of dacomitinib and 80 mg
BID of osimertinib (40 and 80 mg BID was superior to 80 and
160 mg QD of osimertinib, respectively) (“proposed” in Fig. 3c) to
be superior to the conventional schedule. All considered
schedules adhered to optimization constraints such as tolerability
at each dose level and commercially available doses in tablets.
Among the considered schedules, we identified the one that was
predicted to minimize the number of tumor cells 1 year after the
start of treatment. Additionally, we compared the schedules at
two different time points: after 8 weeks of treatment (first planned
follow-up of patients) and after 1 year of treatment, when
resistance to the drug is typically observed. Figure 3d shows the
median improvement percentage of 30 mg QD of dacomitinib
and 40 mg BID (proposed level 3 schedule) of osimertinib relative
to other analyzed schedules after 1 year of treatment. Specifically,
we observed that 30 mg QD dacomitinib and 40 mg BID
osimertinib are predicted to significantly outperform 15mg BID
dacomitinib and 80 mg BID osimertinib (P = 0.034), and also to
outperform 15mg TID dacomitinib and 80 mg QD osimertinib
(P = 0.03). In contrast to 30 mg QD dacomitinib and 80mg QD

Fig. 3 In silico clinical trials of osimertinib and dacomitinib combination therapy. a Schematic overview of simulation steps comparison of dosing
schedules for one individual. b Distribution of cell types before the initiation of the in silico trial over 1000 simulated patients (rows). c Conventional (top)
and proposed (bottom) dose-escalation schedules to identify the MTD in a phase I study. d Comparison in outcomes of different schedules identified by
their dacomitinib and osimertinib doses on the axes; the y axis is median improvement percentage of 30mg QD of dacomitinib and 40mg BID of
osimertinib (proposed level 3 schedule) relative to each dose combination is shown after 1 year of treatment. e, f Waterfall plots with the relative
improvement percentage of our proposed schedules compared to the conventional schedules after 8 weeks (2 treatment cycles) and 1 year of treatment,
respectively, for 100 patients.
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osimertinib, we observed a marginally significant improvement
after 1 year of treatment (P = 0.051) after multiple comparison
corrections. When comparing the optimized versus conventional
schedule, we observed a notable improvement in roughly 20% of
the cases for level 2 through level 4 schedules after two treatment
cycles (Fig. 3e), mainly driven by the suppression of T790M
clones (Supplementary Fig. S10a), and an improvement in 100%
of patients after 1 year of therapy (Fig. 3f). Thus, we predicted
that smaller but more frequent doses of osimertinib with larger
and less frequent doses of dacomitinib would result in improved
outcomes in simulated subjects. We repeated our analyses for
patients with a bodyweight of 90 kg (median is 70 kg) and
observed that our proposed schedules would still fare better after
1 year of treatment, but a quarter of patients would benefit from
taking 80 mg osimertinib QD over 40 mg osimertinib BID in level
3 of the dose-escalation (Supplementary Fig. S10b). Nevertheless,
the improvements of these patients were relatively low (median
5%) compared to those of patients who benefited from 40mg
osimertinib BID (median about 50%). Thus our proposed dose-
escalation schedule outperformed the conventional schedule
across all simulated patients, even after incorporating inter-
patient variability in drug concentration and tumor heterogeneity.
This result is encouraging for clinical implementation because
customization of schedules for each individual patient was able to
be avoided.

Pharmacokinetic variability contributes to the heterogeneity in
treatment response. The popPK models of both dacomitinib and
osimertinib contain parameters such as the volume of distribution
and clearance rate distributions for the central and peripheral
compartments, absorption rates, and transfer/elimination rates.
In our in silico clinical trial studies, these PK parameters were
considered to be constant across different doses but unique to
each patient. The PK parameters are log-transformed linear
mixed effect models composed of clinical variables, such as body
surface area or albumin levels in the blood (see “Methods” sec-
tion). We then sought to analyze the association between the
different PK parameters and the estimated relative improvement
percentages based on simulation results of the in silico trials. To
this end, we fixed the clinical predictors at the median and used a
Spearman correlation estimator for comparisons. We found that
there was a statistically significant negative correlation (p <
0.0001) between the volume of distribution of the central com-
partment of osimertinib and the estimated improvement of the
proposed versus conventional schedule. This observation suggests
that patients with low estimates for this PK parameter may have a
better outcome when treated with the proposed schedule as
compared to other patients. Furthermore, the absorption rate and
clearance of distribution of the central compartment of osi-
mertinib were significantly positively associated (p < 0.0001) with
the predicted relative improvement of the proposed schedule. In
general, we found that PK parameters of osimertinib were more
predictive of an improvement than those of dacomitinib. To
quantify this finding, we performed random forest analysis to
rank the importance of parameters on the estimated improve-
ment of our proposed schedule compared to the conventional
schedule (Fig. 3d). The parameters used in the random forest
were the pre-existence of resistant mechanisms before treatment,
initial tumor size, and all pharmacokinetic parameters. This
analysis identified that after 2 weeks of therapy, the prevalence of
the NRAS mutation before treatment, pNRAS, was the most
important parameter (Supplementary Fig. S11a). However, the
importance of this parameter decreases after 1 year of treatment
(Supplementary Fig. S11b), suggesting that over time, the phar-
macokinetic features of a patient or the pre-existence of T790M

become more important for determining response to combina-
tion therapy than the pre-existence of NRAS mutations. We
further explored the relationship of PK parameters with resistant
subclones and observed that the clearance of the central and
peripheral compartments in the osimertinib popPK model were
positively correlated with the frequency of T790M+ subclones
during treatment (Supplementary Fig. S11c, p < 0.001, Spearman
test with Bonferroni correction). With respect to the frequency of
C797S+ subclones, the clearance of both compartments in the
dacomitinib model was positively associated with subclone count,
whereas the absorption rate of dacomitinib was negatively cor-
related with C797S cell counts (Supplementary Fig. S11d).

Model validation using long-term in vitro cell culture assays.
To validate our predictive modeling platform, we performed
duration of response (DoR) in vitro cell culture assays for several
specific dosing schedules (see “Methods” section). Because these
assays are not performed on organisms in which drug con-
centrations change substantially over time, we used fixed drug
concentrations for the validation experiments; thus we utilized the
conventional and proposed dosing schedules, shown in Fig. 3c, to
derive the drug concentrations applied in the validation experi-
ments by estimating the median drug concentration at steady state
(Supplementary Fig. S12a). The derived in vitro equivalents of
45 mg of dacomitinib and 80mg of osimertinib are 4.40 and
10.38 nM, respectively. Additionally, 2.94 nM of dacomitinib and
5.19 nM of osimertinib are analogous to 30 mg QD of dacomitinib
and 40mg QD of osimertinib (conventional dose level 2), whereas
1.47 nM of dacomitinib and 10.38 nM of osimertinib correspond
to the proposed dose level 2 (Fig. 3c). The conventional dose level
4 and proposed dose level 4 yielded 4.40 nM dacomitinib +
10.38 nM osimertinib and 2.94 nM dacomitinib + 20.75 nM osi-
mertinib, respectively. Lastly, 40mg BID osimertinib produces the
same in vitro concentration as 80 mg QD osimertinib, so we were
unable to compare dose level 2 schedules.

We used several starting conditions for these experiments. The
RPC9-CL9 clone is composed of 90% allele frequency exon 19
deletion and 10% allele frequency exon 19 deletion as well as
T790M. Mixed pools composed of PC9 cells and RPC9-CL9 cells
(at ratios 10–1 and 100–1) were also investigated in these studies.

When comparing the experimental results with the modeling
predictions based on parameter estimates obtained in Fig. 1, we
found that the predicted tumor cell counts accurately described the
validation data in terms of identifying the superior regimen at each
level of the dose-escalation process. Generally, for long-term assays
(i.e., more than 50 days), the predicted cell counts were higher than
those observed, perhaps suggesting a lower true mutation rate or
some other intrinsic decrease in cell growth due to their
environment (Supplementary Fig. S12b), which has been observed
in previous studies under similar conditions (see Supplementary
Fig. S8E in ref. 30). In the PC9 to RPC9-CL6 ratio pool of 10:1, we
observed an agreement in cell number under different drug
concentrations at three different time points (Fig. 4a). On day 30 of
the assays, we correctly predicted the superiority of 2.94 nM of
dacomitinib + 20.75 nM of osimertinib (corresponding to 30mg
QD of dacomitinib and 80mg BID of osimertinib) over 4.40 nM of
dacomitinib + 10.30 nM of osimertinib (corresponding to 45mg
QD of dacomitinib and 80mg QD of osimertinib), which was also
observed in the validation experiments (p = 0.0159). In the PC9 to
RPC9-CL6 ratio pool of 100:1, our model also proved to be
accurate in terms of cell numbers on days 10, 20, and 30 of
treatment (Fig. 4b). On day 10, all schedules seemed to have a
similar effect on cell numbers, while the disparity between the
schedules’ efficiency became clearer on day 30, where our model
correctly ranked the first 3 schedules. However, one of the
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schedules (2.94 nM dacomitinib + 5.19 nM osimertinib) displayed
an abnormally high variability, which resulted in a non-significant
difference from a schedule expected to fare worse. Furthermore, we
found that EGFR pathway suppression and induction of apoptosis
in PC9 and RPC9-CL6 cells were consistent with the long-term
viability effect of the combination (Supplementary Fig. S3c). PC9
cells with the NRAS mutation, whose estimated birth rate is almost
constant at any dosing of dacomitinib and osimertinib (Fig. 2d),
displayed no change in growth as expected (Supplementary Fig.
S12d). Thus, our model was successfully validated in vitro.

A phase I study using the modeling-derived dosing schedule of
osimertinib and dacomitinib. Based on our modeling predic-
tions, we incorporated the predicted dosing schedule in a phase
1 study at Memorial Sloan Kettering Cancer Center (see “Meth-
ods” section). We enrolled 22 patients: 12 patients in initial dose
escalation and 10 patients in an expansion cohort at the recom-
mended phase 2 dose. In dose escalation, patients received doses
ranging from dacomitinib 15–30 mg daily and osimertinib 40 mg
daily to twice daily (Table 1). The baseline characteristics of the
study population are shown in Table 2. Patient characteristics

Fig. 4 Longitudinal validation experiments in mixed cell pools at days 20, 30, and 40 of treatment. Predictions and interquartile ranges from
mathematical modeling predictions are shown in a dashed red line and shaded regions, respectively. Observations with two standard errors are shown in
black dots and error bars, respectively. The RPC9 (RPC9-CL6) clone is composed of 90% exon 19 del cells 10% exon 19 del and T790M alleles. a PC9-
RPC9 cell pool in 10–1 ratio. Our predictions ranked schedules correctly, detecting a difference between the two best schedules at day 30 (p = 0.0159, two-
sided t-test with n = 6 biological samples). b PC9-RPC9 cell pool in 100–1 ratio. Our predictions ranked schedules correctly except for the worst
2 schedules, but the difference between the schedules was not statistically significant in the observed data (p = 0.294, two-sided t-test with n = 6
biological samples). Source data are provided as a Source Data file.

Table 1 Dose levels in the dose-escalation study.

Dose level Osimertinib Dacomitinib # of Patients enrolled DLT?

1 40mg daily 15 mg daily 3 None
2 40mg twice daily 15 mg daily 3 None
3 40mg twice daily 30mg daily 6 None
4 80mg twice daily 30mg daily N/A N/A
RP2D dose expansion 40mg twice daily 30mg daily 10 None

Table 2 Baseline patient characteristics.

Characteristic n = 22
Median age, years (range) 65 (36–78)
Sex

Female 15 (68%)
Male 7 (32%)

KPS (%)
≥90 16 (73%)
80 6 (27%)

Smoking status
Former (pack years range) 12 (2–30)
Never 10 (45%)

EGFR sensitizing mutation
L858R 8 (36%)
Exon 19 deletion 13 (59%)
L861Q 1 (5%)

Brain metastases
No 13 (59%)
Yes (untreated) 9 (9)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23912-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3697 | https://doi.org/10.1038/s41467-021-23912-4 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


were in line with typical patients with newly diagnosed EGFR-
mutant lung cancers (predominantly never/light smokers,
women). Forty-one percent had brain metastases at diagnosis,
and all nine were untreated with radiation or surgery prior to
study start. The patients were enrolled from January 2019 to May
2020 and the database lock was April 12th, 2021.

All patients were evaluable for toxicity assessment. There were
no grade 4 or 5 toxicities and the most common treatment-related
adverse events were grade 1–2 diarrhea and rash (Table 3). 15
patients had a dose reduction of dacomitinib, of which 5 patients
also had dose reductions of osimertinib (Supplementary Table S2).
The more common toxicities resulting in dose reduction were
rash (n= 5), mucositis (n= 3), and diarrhea (n= 3). Three
patients discontinued study treatment with intolerable grade 1–2
toxicity (Supplementary Table S2). The decision was made not to
dose escalate beyond dacomitinib 30 mg daily and osimertinib
40 mg twice daily (dose level 3) due to feasibility. Although there
were no dose-limiting toxicities (DLT), the frequency of grade
1–2 drug-related toxicity was high and intolerable for patients
over the long treatment duration expected. The recommended
phase 2 dose was dacomitinib 30 mg daily and osimertinib 40 mg
twice daily. Patients in the dose-expansion arm received
dacomitinib 30 mg daily and either osimertinib 40 mg twice daily
or osimertinib 80 mg once daily depending on insurance
coverage.

The study is complete and has met its primary endpoint of
identification of the recommended phase 2 dose of the
combination. Patients can continue to remain on study if they
are clinically benefitting from treatment and to further assess
long-term toxicity. Efficacy endpoints remain immature. The
median follow-up is 15.1 months. Of the 22 patients treated, 21
have had radiographic assessments of their disease. 16 of 22 have
had a confirmed partial or complete response to treatment
resulting in an overall response rate of 73%. Six patients have
come off treatment for disease progression and 1 patient
withdrew from the study unrelated to toxicity or progression.
Follow-up is ongoing.

Discussion
In this paper, we established a predictive modeling platform that,
when parameterized using information from in vitro cell line
assays, can be used to identify optimal combination dosing
schedules for osimertinib and dacomitinib treatment for patients

with EGFR-mutant NSCLC. Our approach suggests that higher
but less frequent doses of dacomitinib and lower but more fre-
quent doses of osimertinib would yield superior results. This
observation is due to the pharmacodynamic and pharmacokinetic
profiles of the individual cell types and drugs under considera-
tion. Dacomitinib has a narrower therapeutic index than osi-
mertinib, and therefore it is necessary to maintain a sufficiently
high concentration of dacomitinib in plasma, which is reached by
administering a larger dose. Furthermore, the drug’s pharmaco-
kinetics suggest a slow depletion in plasma, making frequent
doses less necessary to maintain the drug concentration within
the therapeutic window (Fig. 2b). On the other hand, osimertinib
has a large therapeutic index and its concentration in plasma is
depleted relatively quickly (Fig. 2c). As a result, it is not necessary
to administer large doses of osimertinib since a lower dose still
reaches the therapeutic window, but to maintain the drug con-
centration within this window, frequent dosing is required to
keep pace with the drug’s rapid elimination from the system. Our
mathematical modeling approach yields the additional advantage
of a quantitative comparison of the performance of various
schedules. Our modeling approach, based on extensive human PK
data and in vitro dose-response information, provided sufficient
support to approve the recommended dosing regimen for a
clinical trial, without the necessity of any additional in vivo
experiments. We, therefore, performed a phase 1b study incor-
porating the dosing schedule derived from our predictive mod-
eling platform and demonstrated the safety and tolerability of the
combination, a proof of concept that could justify broader use of
this technique in future phase 1 combination trials.

The rate of serious adverse events remained low and did not
exceed historical experience with single-agent dacomitinib or
osimertinib. Predictably, we did identify frequent low-grade rash
and diarrhea, which are the most common toxicities with single-
agent dacomitinib and osimertinib; these lower grade toxicities
were somewhat additive with the combination. However, grade
1–2 issues resulted in dose reduction in 15 cases and trial dis-
continuation in 3 cases. Lower-grade gastrointestinal and cuta-
neous toxicities significantly impact the quality of life for patients
and often lead to dose reductions especially for treatments that
are expected to be efficacious over a long time period. Therefore,
we ultimately established dacomitinib 30 mg daily and osimerti-
nib 40 mg twice daily as the recommended dose for future studies.
Our clinical data demonstrate that even when utilizing mathe-
matical modeling and careful consideration of dose, combination
EGFR inhibition is challenging due to consistent, lower grade
gastrointestinal and cutaneous toxicities over the long treatment
duration. Our mathematical model can be applied to other tar-
geted therapies using proper data to parametrize tumor drug
response. For instance, other second-generation EGFR inhibitors
elicit similar responses to dacomitinib, and we, therefore, expect
that our modeling platform, together with appropriate dose-
response and PK data, can be applied for designing combination
trials for other agents as well.

There are a few limitations to our paper. First, we lacked
toxicity data from patients receiving osimertinib in combination
with dacomitinib in the clinic so this could not be accounted for
in our model (NCT03810807)18. Furthermore, our mathematical
modeling does not take into account a tumor’s carrying capacity
or spatial constraints; we opted to use a more parsimonious
model since an approach containing a carrying capacity would
contain a large number of variables that may vary considerably
among patients as well as environmental conditions37.

Our modeling platform can be used to personalize treatment
for individual patients. We envision that, with the advent of
methodology to obtain real-time patient-specific PK information,
our models can be used to identify the best dosing schedule for

Table 3 Grade 1–3 treatment-related adverse events.

Adverse event Treatment-related toxicities

Grade 1 Grade 2 Grade 3 Total Incidence

Diarrhea 13 4 2 19 86%
Rash acneiform 8 7 15 68%
Mucositis oral 5 7 1 13 59%
Dry skin 9 2 1 12 55%
Anorexia 2 6 1 9 41%
Dysgeusia 6 2 8 36%
Fatigue 5 3 8 36%
Paronychia 6 2 8 36%
Rash maculopapular 3 4 7 32%
Pruritus 5 1 6 27%
Weight loss 4 1 1 6 27%
Alopecia 4 4 18%
Nausea 2 2 4 18%
Skin infection 2 2 4 18%
Cough 1 2 3 14%
Dry eye 2 1 3 14%
Rhinorrhea 3 3 14%
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each patient. Drugs that are administered intravenously or drugs
that can be obtained for a variety of dose options per tablet may
be better suited for individual optimization. We also aim to
enhance our model ensemble by expanding toxicity modeling and
combination with popPK models to predict which patients are
most likely to have adverse effects from the drug combination.
Another future application of interest is to identify an optimal
schedule for patients with brain metastases. Osimertinib can
successfully penetrate the blood-brain barrier: patients who had
received 160 mg osimertinib daily had a concentration of about
7.51 nM in the central nervous system28. Even though the effect
of dacomitinib on brain metastases has not been studied in
human patients, dacomitinib has displayed brain penetration in
preclinical models and thus can be active as well in clinical
settings38,39. Finally, we intend to increase the practicality of our
model by incorporating other resistance mechanisms commonly
observed in treated EGFR-m NSCLC and feature other targeted
therapies in combination with EGFR inhibitors.

Methods
Clinical trial. The study was a phase 1 dose-escalation study of combination
dacomitinib and osimertinib for patients with metastatic EGFR-mutant lung
cancer. The study was approved by the Memorial Sloan Kettering Institutional
Review Board; the study design and conduct complied with all required regulations
and was conducted in accordance with the criteria set by the Declaration of Hel-
sinki. There were three potential dose levels of the combination and once the MTD
was identified, 10 additional patients were to be enrolled at the MTD to complete
an expansion cohort. The primary objective of the study was to determine the
maximum tolerated dose of the combination of dacomitinib and osimertinib.
Secondary objectives included measuring best overall response, progression-free
survival, and overall survival. After the maximum tolerated dose/recommended
phase 2 dose was established, an expansion cohort at that dose was enrolled with
the primary objective to further establish the toxicity profile of the combination.
The secondary objective of the expansion cohort was to obtain preliminary efficacy
data by measuring the objective response rate. Up to 34 patients could be enrolled.
Patients were required to have biopsy-proven metastatic EGFR-mutant lung cancer
and not to have had prior treatment with an EGFR TKI to enroll. See the study
protocol for additional eligibility criteria. The first patient enrolled in January 2019
and the last patient in May 2020. The database lock was April 2021.

Compounds, cell lines, and culture conditions. Dacomitinib, PF-06747775, and
osimertinib were synthesized via Pfizer Worldwide Research and Development (La
Jolla, CA, USA). Compounds were dissolved in dimethyl sulfoxide (DMSO)
(10 mM) and diluted in a cell culture medium for evaluation of cellular potency.
PC9 cells were purchased from RIKEN Cell Bank (Tsukuba, Ibaraki Prefecture,
Japan) and were cultured in Gibco® RPMI (Life Technologies™, Carlsbad, CA,
USA) medium with 10% heat-inactivated FBS (Sigma®, St. Louis, MO, USA). PC9-
DRH, harboring both the single-mutant (Del) and double-mutant (Del/T790M)
alleles, is a pool of cells derived from the PC9 parental line that was selected after
treatment with gradually increasing concentrations of dacomitinib up to 2 μM.
PC9-DRH EGFR alleles consist of 70% Del/T790M and 30% Del. PC9-DRH cells
were cultured in Gibco® RPMI medium with 10% FBS, and maintained in daco-
mitinib (2 μM)40. RPC9-CL6, harboring both the single-mutant (Del) and double-
mutant (Del/T790M) alleles, is a clone of cells derived from the PC9 parental line
that was selected after treatment with gradually increasing concentrations of
dacomitinib up to 2 nM. RPC9-CL6 EGFR alleles consist of 10% Del/T790M and
90% Del. RPC9-CL6 cells were cultured in Gibco® RPMI medium with 10% FBS,
and maintained in erlotinib (2 μM). PC9R-NRAS, harboring 40% allele frequency
NRAS-Q61K mutation and sensitive to treatment with the combination of a third-
generation EGFR TKI (e.g., osimertinib) plus a MEK inhibitor (e.g., selumetinib), is
a pool of cells derived from the PC9 parental line that was selected after treatment
with gradually increasing concentrations of a third-generation EGFR TKI PF-
06747775 up to 1 uM. PC9R-NRAS cells were cultured in Gibco® RPMI medium
with 10% FBS and maintained in PF-06747775 (1 μM). PC9 C797S cells were
generated by introducing an EGFR Exon 19 del/C797S construct into PC9 cells via
lentiviral transduction as previously described19 and cultured in RPMI with
10% FBS.

Cell viability assays. Cells (2000 cells/well for PC9 or 3000 cells/well for PC9-
DRH, PC9R RRAS, and PC9 C797S) were seeded in a 96-well microtiter plate and
allowed to adhere overnight. The compound was added and incubated for 24, 48,
or 72 h. After compound incubation, cell viability was measured utilizing CellTiter-
Glo® (Promega Corporation, Madison, WI, USA) reagent following the manu-
facturer’s instructions. The resulting luminescence signal was read using an
EnVision® Multilabel Reader (PerkinElmer®, Waltham, MA, USA) plate reader.

Baseline CTG read was performed in a separate plate after overnight seeding (day
0) under the same cell seeding condition as the drug treatment plates. The
concentration–response curve was plotted as log drug concentration (X axis) versus
percent control (Y axis) using GraphPad PRISM. For the estimation of cell
numbers, the ratio of CTG read per cell is calculated based on the following
formula

Ratio of CTGcell ¼
CTGDay 0with cells � CTGDay 0without cells

Ncells
ð2Þ

where Ncells is the number of seeded cells.

Immunoblotting analysis. Cells were treated with compound for 24 h, harvested,
and stored at −80 °C until further analysis. Cell pellets were lysed in lysis buffer
(150 mM NaCl, 1.5 mM MgCl2, 50 mM 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES), 10% glycerol, 1 mM ethylene glycol tetraacetic
acid (EGTA), 1% Triton ® X-100, 0.5% NP-40) supplemented with 1 mM Na3VO4,
1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM NaF, 1 mM β-glyceropho-
sphate, cOmplete Mini EDTA-free Protease Inhibitor Cocktail Tablets, and
PhosSTOP prior to use. Protein concentration was determined using the BCA
Protein Assay (Pierce/ThermoFisher Scientific, Rockford, IL, USA) per the man-
ufacturer’s instructions. Ten µg of total protein were resolved by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto the
nitrocellulose membrane. Blots were probed with primary antibodies overnight at
4 °C in the manufacturer’s recommended buffer to detect proteins of interest. After
incubation with secondary antibodies, signals were visualized by chemilumines-
cence (Pierce/ThermoFisher Scientific) on a FluorChem™ Q digital imager (Protein
Simple™, Santa Clara, CA, USA). Antibodies against EGFR (4267), p-EGFR Y1068
(3777), extracellular signal-regulated kinase (ERK) (9102), phosphorylated-ERK
(p-ERK) T202/Y204 (9101), Akt (4691), pAktS473 (4060), S6 ribosomal protein
(S6) (2217), phosphor-S6 ribosomal protein S235/236 (pS6) (4858), cleaved PARP
(9541) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (2118) were
purchased from Cell Signaling Technology® (Danvers, MA, USA). Dilutions used
for experiments are shown in Supplementary Table S3.

Mathematical/statistical modeling. We used R version 3.5 for all analyses41. For
each cell type and drug combination, we used OLS regression with a logarithmic
transformation and regressed cell count against time to obtain a growth rate
(Fig. 1b, c). After obtaining these growth rates, we used linear regression with
transformed outcomes to model growth rates given the concentrations of daco-
mitinib and osimertinib. The transformation and the regression are given by

log
yi � ymin

ymax � yi

� �
¼ Ciβþ ϵi; ϵi � N 0; σ2

� � ð3Þ

where yi is the growth rate at observation i, and ymax and ymin are respectively the
maximum and minimum growth rates. Ci is a vector of transformed drug con-
centrations (selected when finding the best model fit), while β is a vector containing
the fixed effects with respect to Ci (Supplementary Figs. S5C, S6C, S7C, and S8D).
We obtained the birth rate by adding the death rate to the predicted growth rate
and assumed that death rates were time-invariant.

To model tumor evolution, we used a multi-type branching process with drug-
dependent, and hence time-dependent, birth and death rates12,42. We assumed that
resistance mechanisms are not mutually exclusive within a tumor (i.e., each patient
may exhibit more than 1 resistance mechanism), but they are mutually exclusive
within a cell due to lack of experimental data based on cell lines harboring multiple
mutations.

We assumed that the resistance mutations T790M and C797S were not
mutually exclusive, but we are aware that the allelic context is important19. If the
C797S and T790M mutations are in trans, cells are resistant to third-generation
EGFR TKIs, but are sensitive to a combination of first and third-generation TKIs. If
the mutations are in cis, no single EGFR TKI alone or in combination can suppress
activity. If C797S develops in cells without T790M (observed when third-
generation TKIs are administered as first-line therapy), the cells are resistant to
third-generation TKIs, but retain sensitivity to first-generation TKIs. Our tumor
evolution assumptions model the last type of resistance mechanism (C797S without
T790M).

Simulation of population pharmacokinetic models. We used popPK models to
simulate drug concentrations in various individuals43. PopPK models, which tend
to be multi-compartmental, focus on the sources of variability in drug con-
centrations among individuals who are the target patient population receiving
clinically relevant doses of a drug of interest44,45. These methods possess key
advantages for characterizing PK across multiple studies, for exploring PK varia-
bility due to intrinsic factors (e.g., age, sex, race, mutation status) and extrinsic
influences, and for informing dosage adjustments based upon these influences46.
We opted to use popPK models to incorporate between-subject variability com-
monly observed in drug studies. We assumed that the drug concentration in the
tumor is comparable to the drug concentration in the central compartment, which
is typically represented as the drug concentration in plasma or highly vascular
tissue47.
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To simulate the plasma concentration of dacomitinib, we used a popPK model
constructed by Pfizer using a two-compartment structure22. We used a published
popPK model for osimertinib that is based on a two-compartment linear structural
model23. In the latter approach, a first-order conditional estimation (FOCE) with
interaction was used to derive the mean and variance estimates. The FOCE method
was then used to approximate the Hessian matrix due to the difficulty of direct
computation of second-order derivatives48.

We simulated drug concentrations simultaneously using the multi-platform
package Ubiquity49. Because PK parameters are functions of clinical variables, we
set these variables to the reported median from a previous study23. In subsequent
simulations, we also simulated subjects with different predictors and observed
effects on tumor growth.

Let η ¼ ηCL;daco; ηV;daco; ηCL;osi; ηV;osi

� �T
be a vector composed of the

distributions of the random effects used in the PK models of dacomitinib and
osimertinib. By the models’ descriptions, we have that η � MVNð0;ΩÞ. The studies
of the popPK models we used in the simulations reported Cov ηCL;daco; ηV;daco

� �
and CovðηCL;osi; ηV;osiÞ. Because we had no estimates for the covariances between
the drugs’ random effects, we identified correlations that would allow the
covariance matrix to remain positive semi-definite. We simulated the following
scenarios:

ρCL ¼ 0; 0:15; 0:3f g and ρV ¼ 0; 0:2; 0:5; 0:8f g ð4Þ
where ρCL ¼ CorðηCL;daco; ηCL;osiÞ and ρCL ¼ CorðηV;daco; ηV;osiÞ. Only the listed
correlations yielded a positive semi-definite covariance matrix. There were larger
improvements with our proposed schedules compared to the conventional
schedules assuming high correlations between the random effects of the drugs, but
there was still an improvement when we assumed independence between the
popPK parameters.

Initial populations and mutation rates. A prior study reported that the median
baseline sum longest diameter (BSLD) of lung cancers is 7.5 cm, with an IQR
4.5–11.7 cm and the lowest observed (and detectable) value being 1 cm of diameter
at diagnosis50. To convert the tumor size at diagnosis to cell numbers, we used the
equivalency of 1 cm3=108 tumor cells as suggested by prior literature for most
tumors51,52. We used this information of tumor diameters to create the following
truncated distribution:

BSLD ¼ X1 X ≥ 1ð Þ ð5Þ
where X � N 7:5; 39ð Þ cm3, 1ðÞ is the indicator function, and sampled zeroes were
discarded. We set the truncation at 1 because the minimum detectable diameter of
a lung tumor50 is 1 cm. We then converted those sampled diameters to volume (V)
in cm3 and multiplied by 108 to obtain the number of cells:

V ¼ 4π BSLD
2

� �3
3

ð6Þ

To sample the initial tumor cell count of each resistant cell type for each
simulated patient, we used estimates based on prior literature; T790M in newly
diagnosed patients14,31–33 has been suggested to occur with a frequency of 1 out of
3 million cells14. Using droplet digital PCR (ddPCR), it was shown that ~80% of
patients with NSCLC harboring EGFR-activating mutations harbored the T790M
mutation at an ultra-low allele frequency between 0.001% and 0.1% pre-treatment
based on an analysis of 373 patients32. Therefore, about 80% of simulated patients
had pre-existing T790M clones with a mutation rate (from drug-sensitive cell to
T790M cells) sampled from a normal distribution centered at 10�7

(Supplementary Fig. S9a). NRAS mutations are less common than other resistance
mechanisms and arise in about 1% of NSCLC patients34. There is not enough
quantitative data of NRAS pre-existence in untreated NSCLC; therefore, we
assumed that the presence of NRAS-positive clones in the simulated pre-treatment
tumors is rarer than that of T790M by two orders of magnitude and present in
only 1–5% of simulated patients. The NRAS mutation rate is considered to be
substantially smaller than that of T790M, and thus we sampled mutation rates
from a distribution centered at 10−9.5 but with a smaller variability to avoid
extremely small mutation rates. C797S arises in about 10% of NSCLC patients in
the US, but in 40% of NSCLC patients who have developed T790M-driven
resistance when treated with first-generation EGFR TKIs5. However, the
prevalence of C797S mutations among patients with third-generation EGFR TKIs
as first-line therapy has remained low; thus, we assumed no pre-existence and a
mutation rate distribution of one order of magnitude lower than that of T790M
(Supplementary Fig. S9b). Lastly, we did not restrict pre-existing mutations to be
mutually exclusive within a tumor; in other words, a simulated pre-treated tumor
could either have T790M-positive cells and NRAS-positive cells, only one of these
mutations present, or neither.

Trial simulations and comparison of schedules. We used a multi-type birth and
death branching process with continuous birth and death rates to simulate the
evolutionary dynamics of a tumor12. Each drug-sensitive cell lives for a random
amount of time that follows an exponential distribution before mitosis or death.

During mitosis, a cell has a small probability of developing a resistance mechanism
to one or more drugs. After a mutation has arisen, the newly emerged drug-
resistant cell may have different birth and death rates than those of the parent cell.
In our simulations, the birth rate is dependent on drug concentration which is
dependent on time; the death rates are assumed to be constant. Stochastic processes
are computationally expensive when the initial cell count is large. As a result, we
calculated the expected number of cancer cells in different clones under treatment
using a previously developed approach for situations when the stochastic approach
was not feasible12.

We considered schedules that adhere to two optimization constraints: (1) an
approximation of the maximum amount of tolerated drug and duration of
exposure using clinical experience, and (2) schedule options depending on
commercial dose availability. Osimertinib is available in 40 mg and 80 mg tablets,
whereas dacomitinib is available in 15, 30, and 45 mg tablets. Thus, we used these
doses in our simulations and varied the frequency of administration while
complying with the first constraint.

After estimating cell counts under a specific dosing schedule at time t, we
compared different schedules by estimating the relative improvement defined as in
Eq. 1. We reported the comparisons of the total cell count to identify the schedule
that performed better across all subclones.

Duration of response study. Cells (PC9, RPC9-CL6, PC9R-NRAS, and mixed
PC9/RPC9-CL6) were seeded in T25 flasks (three flasks per condition). When cells
reached a density of estimated cell confluence as ~40%, dacomitinib and/or osi-
mertinib at the indicated concentration were added to the cells and the time is
recorded as day 0. Cells were fed fresh medium and drug every week and cell
confluence was monitored on a daily basis. When cell growth reached ~75%
confluence, cells were harvested, counted, and 1/6 of the collected cells were used to
seed a fresh T25 flask. Once growth reached ~75% confluence again, this process
was repeated until cells reach 32 times the initial cell seeding (5 doubling time). The
predicated viable cell number (NP) was calculated using:

NP ¼ NPn
´ 6n�1 ð7Þ

where NPn
is the live total cell count at passage n.

Determining concentrations for in vitro validation. Using drug concentrations
that correspond to the schedules we analyzed, we estimated the average of the
median plasma concentration at the steady-state defined as

�C ¼
R τ
0C tss

� �
mediandtss
τ

ð8Þ

where CðtÞssmedian is the median concentration from our simulations at steady state
(reached after 15 days from initial dose). We adjusted for plasma protein binding
by multiplying average plasma concentration with the unbound fraction in human
serum for each drug, which provided the following concentrations

UCdaco ¼ Cdaco ´ 0:0192 ð9Þ

UCosi ¼ Cosi ´ 0:022
Thus, UCdaco and UCosi were the drug concentrations to be used in the

validation experiments (Supplementary Fig. S11A).

Phase 1 study design. All patients included in the phase 1 clinical trial had biopsy-
proven metastatic non-small cell lung cancer with somatic activating mutations in
EGFR and no prior EGFR inhibitor treatment. Full inclusion/exclusion criteria and
study design are provided in the study protocol (Supplement). All patients pro-
vided written informed consent and the study was approved by the institutional
review board at Memorial Sloan Kettering Cancer Center.

We utilized a standard 3+ 3 dose-escalation design to determine the MTD of
dacomitinib and osimertinib and MTD was defined as the highest dose where ≤1 of
6 patients developed dose-limiting toxicity (DLT). DLTs are defined in the protocol
and occurred within one cycle (28 days for 1 cycle) after starting treatment with
dacomitinib and osimertinib. The dosing levels are provided (Table 3) and an
expansion cohort of 10 additional patients treated at the recommended phase 2
dose to further assess the safety and explore preliminary efficacy was planned.
Toxicity was graded according to the National Cancer Institute Common
Terminology Criteria for Adverse Events CTCAE (CTCAE version 5.0) version 5
and DLTs included are provided in the protocol (Supplement). Toxicity was
assessed using descriptive statistics.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available on GitHub at Michorlab/NSCLC_OsimDacoOptimization. The
clinical protocol is available for review in the Supplementary. Source data are provided
with this paper.
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Code availability
Code is available in https://github.com/Michorlab/NSCLC_OsimDacoOptimization.
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