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Directional Evolution of Virus Within a Host
Under Immune Selection

Yoh Iwasa, Franziska Michor, and Martin Nowak

Summary. Viruses, such as the human immunodeficiency virus, the hepatitis B
virus, the hepatitis C virus, undergo many rounds of inaccurate reproduction within
an infected host. They form a heterogeneous quasispecies and change their property
following selection pressures. We analyze models for the evolutionary dynamics of
viral or other infectious agents within a host, and study how the invasion of a new
strain affects the composition and diversity of the viral population. We previously
proved, under strain specific immunity, that (Addo et al. 2003) the equilibrium
abundance of uninfected cells declines during viral evolution, and that (Bittner
et al. 1997) the absolute force of infection increases during viral evolution. Here
we extend the results to a wider class of models describing the interaction between
the virus population and the immune system. We study virus induced impairment
of the immune response and certain cross-reactive stimulation of specific immune
responses. For nine different mathematical models, virus evolution reduces the equi-
librium abundance of uninfected cells and increases the rate at which uninfected
cells are infected. Thus, in general, virus evolution tends to increase its pathogenic-
ity. Those trends however do not hold for general cross-reactive immune responses,
which introduce frequency dependent selection among viral strains. Hence an idea
for combating HIV infection is to construct a virus mutant that can outcompete
the existing infection without being pathogenic itself.

7.1 Introduction

Many pathogenic microbes have high mutation rates and evolve rapidly
within a single infected host individual. For example, the human immun-
odeficiency virus (HIV) can generate mutations, and escape from immune
responses and drug treatment (Hahn et al. 1986; Holmes 1992; Fenyo 1994;
McMichael and Phillips 1997; Borrow et al. 1997). The continuous evolution
of HIV within an infected individual over several years shifts the balance of
power between the immune system and the virus in favor of the virus (Nowak
et al. 1991). Virus evolution as mechanism of disease progression in HIV in-
fection has been a common theme for the last 15 years (Nowak et al. 1990,
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1995; DeBoer and Boerlijst 1994; Sasaki 1994; Nowak and May 2000). The
basic theoretical idea is that a rapidly replicating HIV quasispecies estab-
lishes a permanent infection that goes through many viral generations within
a short time. The immune system responds to various viral epitopes, but the
virus population escapes from many such responses by generating mutants
that are not recognized in particular epitopes. During the cause of infec-
tion, virus evolution proceeds toward increasing pathogenicity by reducing
immune control and increasing viral abundance. There is ample experimen-
tal evidence for this mode of disease progression: (i) The HIV population
in any one infected host is fairly homogeneous during primary phase but
becomes heterogeneous afterwards (Bonhoeffer and Nowak 1994; Bonhoeffer
et al. 1995; Wolinsky et al. 1996); (ii) the average life-cycle of HIV during
the asymptomatic phase of infection is short, about 1-2 days (Ho et al. 1995;
Perelson et al. 1996; Bonhoeffer et al. 1997); hence the HIV quasi-species can
rapidly respond to selection pressure; (iii) HIV escapes from B-cell and T-cell
mediated immune responses (Phillips et al. 1991; Wei et al. 2003; Addo et al.
2003).

In Iwasa et al. (2004), we analyze three models for the interaction be-
tween a virus population and immune responses (Perelson 1989; McLean and
Nowak 1992; De Boer and Booerlijst 1994; Nowak and Bangham 1996; De
Boer and Perelson 1998; Bittner et al. 1997; Perelson and Weisbuch 1997;
Wodarz et al. 1999; Wahl et al. 2000; Nowak and May 2000). The models
describe deterministic evolutionary dynamics in terms of uninfected cells, in-
fected cells and strain-specific immune responses, in which there are n virus
strains (or mutants) which induce n immune responses that are directed at
the strains that induce them. Virus mutants can differ in all virological and
immunological parameters.

In the absence of immune responses only one virus strain with the maxi-
mum fitness can survive at equilibrium. However, in the presence of immune
responses, multiple strains can coexist stably. Consider a population of vi-
ral strains at a stable equilibrium. Suppose that a new strain is generated
by mutation. There can be several different outcomes: the new strain may
simply be added to the existing population thereby increasing the number of
strains by one; the new strain may invade the existing population and other
strains may become extinct; or the new strain may not be able to invade.

We ask whether there are quantities that will consistently increase (or
decrease) during such viral evolution. We can prove that neither viral load nor
viral diversity increases monotonically with virus evolution (although they are
likely to increase in a probabilistic sense). Iwasa et al. (2004) proved that any
successful invasion of a new virus strain always decreases the total abundance
of uninfected cells if the immune response is specific to the strain. Further
we find that any successful invasion increases the total force of infection,
denoted by

∑n
i=1 βiyi. In the present chapter, after summarizing Iwasa et al.

(2004), we mathematically examine how the invasion of a new strain affects
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the composition and diversity of viral population in a host for some classes of
models with virus induced impairment of immune responses or cross-reactive
immune stimulations. We can show that the same directional evolutionary
trends as in the models without cross-immunity hold for a class of model
with cross-reactive impairment or activation of immune response. Under these
settings. pathogenicity always increases by evolution within a host individual.

However we can also illustrate that these unidirectional trends of virus
evolution under immune selection do not hold for general cross-reactive im-
mune responses, in which a new strain can increase the uninfected cell num-
ber.

7.2 Model of cytotoxic immunity

We start with a model in which cytotoxic immune responses reduce the life-
time of infected cells (Iwasa et al. 2004). Let x be the abundance of uninfected
target cells, and yi be the abundance of cells infected with virus strain i. Let zi

be the abundance of immune cells specific to strain i. Consider the following
system of ordinary differential equations:

[ Model 1 ] : Strain specific immunity

d
dt

x = λ − dx −
n∑

i=1

βixyi , (1a)

d
dt

yi = (βix − ai − pizi)yi , i = 1, 2, 3, . . . , n , (1b)

d
dt

zi = ciyi − bizi , i = 1, 2, 3, . . . , n . (1c)

Target cells are supplied at a constant rate, λ, and die at a rate proportional
to their abundance, dx. The infection rate is proportional to the abundance of
uninfected and infected cells, βixyi. Infected cells die at rate aiyi because of
viral cytopathicity. The immune response zi is specific to virus strain i. The
efficacy of the immune response in killing infected cells is given by pi. Immune
activity increases at a rate proportional to pathogen abundance, ciyi, and
decreases at rate bizi. We do not model the dynamics of free viral particles
explicitly, but we simply assume that the number of free viral particles is
proportional to the number of cells infected. This is valid because the number
of free vial particles changes at a much shorter time scales than those variables
in (1) (Regoes et al. 1998; Iwasa et al. 2004).

The equilibrium

The model given by (1) has a stable equilibrium. The equilibrium values of
yi and zi can be written as functions of x, derived from (1b) and (1c). We
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denote these by yi(x) and zi(x) for i = 1, 2, . . . , n. For given x, these values
are either positive or zero.

yi =
bi

cipi
[βix − ai]+ , and zi =

1
pi

[βix − ai]+ , (2)

where [x]+ = x, for x > 0, and [x]+ = 0, for x ≤ 0. Hence the equilibrium
abundance of infected cells is a function of uninfected cell abundance x, and
the total intensity of immune reaction Y . Combining Y =

∑n
i=1 βiyi with (2),

we have

Y =
n∑

i=1

βibi

cipi
[βix − ai]+ , (3)

at equilibrium. From, (2), yi is zero for x ≤ ai/βi, but is positive and an
increasing function of x for x > ai/βi. The minimum level of uninfected cells
required to sustain virus strain i is by ai/βi. On the other hand, (1a) indicates
that Y = λ/x − d holds at equilibrium.

The right hand side of (3) is a sum of increasing functions, and hence it
is also an increasing function of x. Incontrast Y = λ/x − d is a decreasing
function of x. Hence there is always a single positive solution x∗ at which (3)
is equal to Y = λ/x − d. x∗ is the equilibrium number of uninfected cells.
Figure 7.1 plotted (3) and Y = λ/x − d, in which the horizontal axis is x,

Fig. 7.1. Graphical representation of (3) and Y = λ/x− d for a population before
and after the invasion of a new strain. The model is given by (1). Broken curve is
for the population with strain 1 and strain 3. Solid curve is for the population with
strain 2 is added. Three arcs connected by kink is (3), indicating per capita risk of
uninfected cells. The curves with negative slopes are Y = λ/x − d, with different
value of λ. Horizontal axis is the abundance of uninfected cells x. P and Q are
for the equilibrium corresponding to different λ, both including two strains. After
invasion of strain 2, (3) would change to a solid curve and the equilibria would shift
to P ′ and Q′. All three strains coexist in P ′. But strain 3 is replaced by strain 2
in Q′
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and the vertical axis is Y . Equation (3) is a piecewise straight line with
a positive slope. Y = λ/x−d is a curve with a negative slope. The equilibrium
solution x∗ is given by their cross point.

As explained in Iwasa et al. (2004), the model given by (1) has a Lyapunov
function and hence the equilibrium calculated in this way is globally stable.

The possibility of invasion of a new strain into the population and its
outcome is also known from a figure such as Fig. 7.1. After invasion, (3)
increases by βjyj(x). If, before the invasion of strain j, the population has
a level of uninfected cells less than aj/βj , the invasion is not successful. If
instead the level of uninfected cells before the invasion is greater than aj/βj,
then strain j can increase. As an outcome of invasion, the cross–point would
shift to above and toward left. The level of uninfected cells x becomes smaller
than before the invasion, and Y is larger than before the invasion, and hence
Y =
∑n

i=1 βiyi should increase.
Figure 7.1 illustrates the situation where two strains (strain 1 and strain 3)

exist in the initial population, and then strain 2 invades it (a1/β1 < a2/β2 <
a3/β3). The broken curve in Fig. 7.1 is for the population before the inva-
sion including strains 1 and 3 only. It consists of three arcs connected by
kinks. Two curves with negative slopes are Y = λ/x − d for different levels
of λ. Both P and Q are the communities with two strains. Strain 2 with an
intermediate value of a2/β2 is added to the population.

Consider the case in which population indicated by P is realized before
the invasion of strain 2. When the strain 2 invades, the equilibrium would
be shifted to P ′ in which all the three strains coexist because the new cross
point is larger than ai/βi of these strains. In this case the outcome of invasion
is simply the addition of a new strain 2 without extinction of the resident
strains. If the population before invasion is the one indicated by Q with
strains 1 and 3. The outcome of the invasion of strain 2 is the one indicated
by Q′ in which strains 1 and 2 coexist, but strain 3 is not maintained. This
implies that the invasion of strain 2 is successful, and it drives strain 3 to
extinction– the replacement of strain 3 by strain 2 occurs. The new level of
uninfected cells x is too low for the strain 3 to be maintained.

From these arguments, we can see the following: (Addo et al. 2003) The
invasibility of a novel strain is determined by whether or not the equilibrium
abundance of uninfected cells before the invasion is greater than ai/βi (inva-
sible if x∗

before > ai/βi; not invasible otherwise). (Bittner et al. 1997) As the
result of a successful invasion, the location of the equilibrium would move
upward and the abundance of uninfected cells downward (x∗

after < x∗
before).

(Bonhoeffer and Nowak 1994) If x∗ moves less than the threshold for some
resident species x∗

after < aj/βj , they should go extinct, while those species
would remain positive if x∗

after > aj/βj is satisfied. As a result of invasion,
the equilibrium intensity of immune reaction Y increases, but the number
of strains maintained in the system may increase or remain unchanged or
decrease. To clarify, we state this as the following proposition:
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Proposition 1. After a new strain succeeds in invasion, the equilibrium
abundance of uninfected cells x always becomes less than the level before the
invasion. The equilibrium total force of infection

∑n
i=1 βiyi always increases

after such an evolutionary change.

A rigorous proof will be given in a later section. Before giving a formal proof,
we would like to explain several different models of interaction between strains
in which a similar evolutionary trend holds.

Note that the number of coexisting strains may not increase monoton-
ically, because the invasion of a strain may cause the extinction of many
existing residents. We also note that the total virus load

∑
i yi may decrease,

but a properly weighted sum of viruses would increase all the time as stated
in Proposition 1.

7.3 Cytotoxic immunity
with proportional activation term

Next, we study another model for strain specific immunity, given by (1) in
which (1c) is replaced by the following:

[ Model 2 ]:

d
dt

zi = (ciyi − bi)zi , i = 1, 2, 3, . . . , n . (4)

Here the immune response reduces the life-time of infected cells, as in model 1,
but the population growth rate of immune cells specific to strain i is propor-
tional to their current number as well as the number of infected cells: the rate
of immune cell production in (4) is given by ciyizi instead of ciyi as in (1c). If
viral abundance is kept constant, the immune activity shows an exponential
increase in (4), but a linear increase in (1c). Again, there is a single, globally
stable equilibrium (see appendix A of Iwasa et al. 2004). It is also similar to
a model by Regoes et al. (1998), but parameters ai, pi, ci were assumed com-
mon among strains (no suffix) in Regoes et al., but they can differ between
strains in (4).

The equilibrium abundance of yi can be expressed as a function of unin-
fected cell number x and the intensity of total immunity Y .

(Case 1) for x >
ai

βi
, yi =

bi

ci
, zi =

βi

pi

(
x − ai

βi

)
, (5a)

(Case 2) for x =
ai

βi
, 0 < yi <

bi

ci
, zi = 0 , (5b)

(Case 3) for x <
ai

βi
, yi = zi = 0 . (5c)
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Fig. 7.2. Graphical representation of (6) and Y = λ/x− d for a population before
and after the invasion of a new strain. The model is given by (1a), (1b) and (4).
Equation (6) is a step like function. Broken curve is for the population with strain 1
and strain 3. Solid curve is for the population with strain 2 is added. The curves
with negative slopes are Y = λ/x − d with different λ. Horizontal axis is the
abundance of uninfected cells x. P and Q are for the equilibrium corresponding
to different λ, both including two strains. After invasion of strain 2, (6) would
change to a solid curve. The equilibrium P remains the same on this graph, but
now includes three strains. But the uninfected cell number (horizontal axis x) does
not change. In contrast Q will shift to Q′, and the strain 3 is replaced by strain 2
and the equilibrium number of uninfected cell x decreases (moves toward left) after
invasion

On a (x, yi)–plane, with fixed Y , equilibrium condition (5) is represented as
three straight lines with a step-like form yi is a continuous function of x
except for a single point x = ai/βi, at which yi can take any value within an
interval 0 < yi < bi

ci
, which appears as a vertical line. Figure 7.2 illustrates

an example. Equation (3) now becomes

Y =
n∑

i=1

βibi

ci
H

[
x − ai

βi

]
, (6)

where H [x] = 1, for x ≥ 0 and H [x] = 0, for x < 0 is a Heaviside function.
Equation (6) can be used except for ai/βi(i = 1, 2, . . . , n), at which one of yi

is discontinuous. When the right hand side is discontinuous (x = ai/βi), we
can interpret (6) as indicating that Y is between the limit from below and
the limit from above of the right hand side.

We assume that species differ in discontinuous points (ai/βi). Then there
is at most one species that might cross the curve if (4) and vertical line
of x = ai/βi, all the other species are either x > ai/βi or x < ai/βi at
equilibrium. This requires a slight modification to Proposition 1. There can
be the situation in which a new strain invades successfully and replace the
resident, and yet the abundance of uninfected cells x remains exactly the same
as before. Graphical representation of (6) and Y = λ/x−d is shown in Fig. 7.2.
Here equilibrium P did not change, and the equilibrium number of uninfected
cells (x∗) remains the same as before. But a new strain is added without
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extinction of the residents. In contrast, equilibrium Q would shift to Q′ after
the invasion of strain 2, which causes the extinction of strain 3 and x∗ becomes
smaller than before. (Iwasa et al. 2004). However the equilibrium abundance
of the uninfected cells should not increase after a successful invasion, it either
decreases or remains unchanged. As a result, the value of Y =

∑n
i=1 βiyi

either increases or remains unchanged after a successful invasion, respectively.
We summarize the result as follows:

Proposition 2. If the invasion of a new strain is successful, the equilibrium
abundance of uninfected cells x never decreases in the evolutionary change.
It never increases. The equilibrium total force of infection

∑n
i=1 βiyi either

increases or remains the same as before, respectively.

A formal proof of this proposition 2 will be given later.

7.4 Models of immune impairment

Before explaining the proof of the two propositions, we would like to explain
other models that behave in a similar manner. We examine the models in-
cluding the interaction between the immune reaction to different strains, such
as cross-reactive immune impairment and cross–reactive immune activation,
which were not covered in Iwasa et al. (2004).

[ Model 3 ]: Cross-reactive immune impairment

Consider the model of the virus-immunity dynamics, which is composed
of (1a) and (1b), but using the following, instead of (1c):

dzi

dt
= ciyi − bizi

⎛⎝1 + u

n∑
j=1

βjyj

⎞⎠ . (7)

Equation (7) indicates that the decay rate is not a constant but an increas-
ing function of the total abundance of virus, bi

(
1 + u
∑n

j=1 βjyj

)
. This as-

sumption represents that any viral strain impairs immune activity against
other viral strains. Based on a similar logic, we can prove Proposition 1 the
same evolutionary trend to hold for the model given by (7), which includes
cross-immunity (u > 0). Hence the successful invasion of a new strain always
decreases the equilibrium abundance of uninfected cells, and always increases
the total force of infection

∑n
i=1 βiyi.

[ Model 4 ]:Same as Model 3 but with a proportional activation term

We may consider the following dynamics of immune cells,

dzi

dt
=

⎛⎝ciyi − bi

⎛⎝1 + u

n∑
j=1

βjyj

⎞⎠⎞⎠ zi . (8)
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In this model, immune cells that are specific against virus mutant i are ac-
tivated at a rate, ciyizi, which is proportional to the product of virus abun-
dance and immune cell abundance (Nowak and Bangham 1996). The second
term within brackets of (8) implies that the mortality of immune cells in-
creases with general activity of viral load (u

∑n
i=1 βiyi). This is also similar

to a model by Regoes et al. (1998), but parameters ai, pi, ci were assumed
common among strains (no suffix) in Regoes et al., but they can differ be-
tween strains in (8).

The equilibrium abundance of yi can be expressed as a function of unin-
fected cell number x and the intensity of total immunity Y .

(Case 1) for x >
ai

βi
, yi =

bi

ci
(1 + uY ) , zi =

βi

pi
(x − ai

βi
) (9a)

(Case 2) for x =
ai

βi
, 0 < yi <

bi

ci
(1 + uY ) , zi = 0 (9b)

(Case 3) for x <
ai

βi
, yi = zi = 0 (9c)

The graphical representation is useful. On a (x, yi)-plane, with fixed Y , equi-
librium condition (9) is represented as three straight lines with a step-like
form, similar to (6). (3) now becomes

Y

1 + uY
=

n∑
i=1

βibi

ci
H

[
x − ai

βi

]
+

. (10)

For this model we can prove Proposition 2. The equilibrium abundance of
the uninfected cells should not increase after a successful invasion, it either
decreases or remains unchanged. As a result, the value of Y =

∑n
i=1 βiyi also

either increases or remains unchanged after a successful invasion, respectively.

[ Model 5 ]: Impairment of immune cell activation

Regoes et al. (1998) also consider the case in which the immune system
impairment appear as a factor reducing the rate of immune activation:

dzi

dt
=

(
ciyi

1 + u
∑n

j=1 βjyj
− bi

)
zi . (11)

In this model, all virus mutants contribute with different efficiency, βj , to im-
pairment of immune cell activation. For this model too, we can prove Propo-
sition 2.

[Model 6]: Cross-reactive immune activation

In all the models of interaction between immune systems to different strains
studied so far, the presence of a strain impairs the immune reaction of other
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strains. This may be plausible for HIV infection because infection of one
strain would impair the general immune system.

A common way of interaction between different immune reactions is cross-
immunity, in which an antigen stimulates the immune reaction of other anti-
gens that are similar to the original one. To represent this, we consider

dzi

dt
= ciyi

(
1 + u

n∑
i=1

βiyi

)
− bizi . (12)

Here, the presence of any strain would reduce the equilibrium abundance of
all the other strains. For dynamics with (1a), (1b), and (12), Proposition 1
holds. In fact, as we show later, the proof of the proposition is easier for
cross-immunity models than the models with immune impairment.

[ Model 7 ]: Cross-immunity with an alternative form

We can also consider the following form:

dzi

dt
=

(
ciyi

(
1 + u

n∑
i=1

βiyi

)
− bi

)
zi . (13)

which is an alternative form of cross-immunity. For model with (1a), (1b),
and (13), we can prove Proposition 2.

7.5 Proof of directional evolution

To prove the directionality of the evolutionary process, as stated in Propo-
sitions 1 and 2, we consider the following general model in which immune
reaction to different strains interact. Let Y =

∑
i∈A

βiyi.

dx

dt
= λ − dx − xY , (14a)

dyi

dt
= yifi(x, yi, Y, zi) , i = 1, 2, 3, . . . , n . (14b)

dzi

dt
= gi(x, yi, Y, zi) , i = 1, 2, 3, . . . , n . (14c)

Let A be a set of strains (A ⊂ {1, 2, 3, . . . , n}). Suppose there is an equilib-
rium formed by a group of strains in set A. Let x∗ and Y ∗ be the equilibrium
number of uninfected cells and the total force of immunity. We further assume
that, starting from any point in which all the strains in A have a positive
abundance, it will converge to the equilibrium (i. e. it is globally stable).

From the dynamics given by (14b) and (14c), we can calculate yi and zi

as a function of x and Y . In the situation for Proposition 1 to hold, such as
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the model given by (1), the equilibrium is a continuous function of x and Y .
Here we first concentrate on such a situation (the cases in which yi is a step
function of x will be handled later). We denote the equilibrium abundance of
cells infected by strain i by

yi = φi(x, Y ) , (15)

which is calculated from (14b) and (14c). In the equilibrium of the whole
system (14), we have:

Y ∗ =
∑
i∈A

βiφi(x∗, Y ∗) , (16)

from the definition of Y . From (14a), we also have

Y ∗ =
λ

x∗ − d , (17)

at equilibrium.
Strain i has a positive abundance at equilibrium if x∗ is greater than

ai/βi, the minimum x for strain i to maintain. If the level of x∗ is too high,
some of the strains in set A may go extinct in the equilibrium. We have

Strain i has a positive abundance at equilibrium, if φi(x∗, Y ∗) > 0 , (18a)
Strain i is absent at equilibrium, if φi(x∗, Y ∗) = 0 . (18b)

In a similar manner, we can express the invasion condition in terms of φ.
When a strain k which is not in A invades the equilibrium, whether or not it
increases can be judged by the sign of φk(x∗, Y ∗):

Strain k can invade the equilibrium, if φk(x∗, Y ∗) > 0 , (19a)
Strain k fails to invade the equilibrium, if φk(x∗, Y ∗) = 0. (19b)

To discuss the outcome of a successful invasion, we assume the following two
conditions:

[Condition 1] φi(x, Y ) 1
Y is a decreasing function of Y if φi(x, Y ) > 0.

[Condition 2] φi(x, Y ) is a continuous and non–decreasing function of x.

All the models we have been discussed have the unique positive equi-
librium satisfying (16) and (17). This can be shown, as follows: We define:
ψ(x) = (1/Y (x))

∑
i=1 βiφi(x, Y (x)). If Y is replaced by Y (x) = λ/x−d, (16)

becomes 1 = ψ(x). ψ(x) is an increasing function of x, because Y (x) is a de-
creasing function, and that (1/Y )

∑
i=1 βiφi(x, Y ) is a decreasing function of

Y . Note ψ(x) = 0 for x ≤ min
i

(ai/βi) because φi(x, Y ) = 0 for x ≤ ai/βi.

Also note limY →+0(1/Y )
∑

i=1 βiφi(x, Y ) = ∞ for x > min
i

(ai/βi). Com-
bining these, we can conclude that there is the unique solution with x > 0
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which satisfies both (16) and (17). Using this, we can calculate all the other
variables (yi and zi for all i).

The global stability of this positive equilibrium is proved for models 1
and 2 in Iwasa et al. (2004), using a Lyapunov function. But for other mod-
els, we simply assume the global stability. When an invasion of mutant is
successful, the positive equilibrium satisfying (16) and (17) would shift to
a new positive equilibrium that is unique. This conjecture is supported by all
the simulations we have done.

Under this stability assumption, we calculate the directionality of the
evolution as follows (see appendix A for proof):

Theorem 1. If Conditions 1 and 2 are satisfied, after a successful invasion
of a strain, the equilibrium abundance of uninfected cells x becomes smaller
than the level before the invasion. The total rate of infection,

∑
i∈A βiyix,

increases by invasion.
Note that the increase in

∑
i∈A βiyix implies the increase of per capita

rate of infection Y =
∑

i∈A βiyi, because x decreases by the invasion. Hence
from Theorem 1, we can conclude Proposition 1.

When equilibrium yi is a step function of x

For the model (1a), (1b) combined with immunity dynamics given by (4), (8),
(11) or (13), yi is not a continuous function of x, and hence Condition 2 is not
satisfied. However yi is expressed as (15) except for a single point x = ai/βi,
at which yi is not specified but takes any value between the maximum and
the minimum, exemplified by (5b). We here assume that ai/βi differ between
species. At x = ai/βi (i = 1, 2, . . . , n), the right hand of (16) is discontinuous.
Then, we use the following inequality instead of (16):∑

i∈A

βiφi(x − 0, Y ) ≤ Y ≤
∑
i∈A

βiφi(x + 0, Y ) . (20)

We summarize these as follows:

[Condition 3] φi(x, Y ) is a continuous and non–decreasing function of x
except for a single point x = ai/βi, in which it is not defined. We have
φi(x, Y ) = 0 for x < ai/βi, and φi(x, Y ) > 0 for x > ai > βi. At x = ai/βi,
we have (20).

In appendix A, we can prove the following Theorem 2.

Theorem 2. If Conditions 1 and 3 are satisfied, after a successful invasion
of one or more strains, the equilibrium abundance of uninfected cells x ei-
ther decreases from the level before the invasion or remains the same. The
equilibrium rate of infection,

∑
i∈A βiyix, increases or remain the same, re-

spectively.
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In appendix B, we can show that these conditions are met for the models
with (1a) and (1b), together with the immunity dynamics given by (4), (8),
(11), or (13). For these models, Theorem 2 holds, and hence Proposition 2
holds, because the increase in Y =

∑
i∈A βiyi is derived from the increase in∑

i∈A βiyix.

7.6 Target cells are helper T cells

HIV infects CD4+ T helper cells. By depleting this target cell population,
HIV impairs immune responses. In this section, we therefore assume that
uninfected target cells, x, are needed for immune activation (Wodarz et al.
1999; Wodarz and Nowak 2000; Wahl et al. 2000). We consider models in
which the dynamics of specific immune cells depends directly on the num-
ber of uninfected cells. Suppose immune activation requires the presence of
a sufficiently many helper T cells in the tissue but the shortage of uninfected
helper–T would cause the general decrease in the immune activity for all the
antigens. This can be expressed as the immune activation rate dependent
directly on the uninfected cell number x.

[ Model 8 ]:
dzi

dt
= zi(ciyix − bi) , i = 1, 2, . . . , n . (21)

In (21) the stimulation of immune reaction is proportional to the abundance
of uninfected cells x. This was called “target cell dependence in immune acti-
vation” by Regoes et al. (1998). If a strain is abundant, it infects and reduces
uninfected cell number x, which causes the decrease of the immune activa-
tion for all the other strains. Hence Regoes et al. regarded this as a way of
introducing immune impairment by cross–immunity, and also called it “in-
direct impairment model”. We can prove that, for the model with immune
dynamics (21), Proposition 2 holds.

We may also think of the system in which (21) is replaced by the following:

[ Model 9 ]:
dzi

dt
= ciyix − bizi , i = 1, 2, . . . , n . (22)

The model, given by (1a), (1b) and (22), satisfies the condition for Theorem
1, and hence we have Proposition 1. The equilibrium abundance of uninfected
cells decreases and the Y =

∑
i∈A βiyi increases after a successful invasion of

a mutant.

Bistability

In contrast, consider the case in which the target cell dependence is of im-
pairment type, and the degree of the dependence is stronger than the one
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assumed by (21). For example,

dzi

dt
= zi(ciyix

2 − bi) , i = 1, 2, . . . , n . (23)

instead of (21). The equilibrium number of cells infected by strain i is:

Y =
{

bi

x2ci
for x > ai/βi

0 for x < ai/βi
. (24)

The equilibrium is determined by a solution of the following equality:

λ − dx =
1
x

(
βibi

ci
H

[
x − ai

βi

]
+

β2b2

c2
H

[
x − a2

β2

])
, (25)

where H [·] is the Heaviside function. There are three equilibria – the one
in the middle is unstable, and the smallest possible and the largest possible
equilibria are both stable. Hence the model constituting (1a), (1b), and (23)
is bistable.

7.7 General cross–immunity violates
the fundamental theorem

We have been studied the evolutionary trends of virus within a host indi-
vidual for a particular model of interaction between immunity to different
strains. However in general cases of the cross–immunity, the decrease in the
equilibrium abundance of uninfected cells no longer holds, as illustrated by
two examples in Iwasa et al. (2004). One of the examples was

dx

dt
= λ − dx −

n∑
i=1

βixyi , (26a)

d
dt

yi =

⎛⎝βix − ai − pi

m∑
j=1

cijzj

⎞⎠ yi , i = 1, 2, 3, . . . , n , (26b)

d
dt

zj =
m∑

j=1

yicij − bjzj , i = 1, 2, 3, . . . , m . (26c)

Here i distinguishes viral strains, and j indicates epitopes. zj is the number
of immune cells specific to epitope j. The number of epitopes is m, which
can be different from the number of strains n. If two strains share a common
epitope, the abundance of one strain stimulates the immune reaction to the
epitope and affects the other strain, which causes cross–immunity. In (26),
cij is the rate of stimulation of strain i to activate the immune reaction to the
jth epitope. The same matrix is used in (26b), which indicates that a strain
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stimulating an epitope is more likely to be suppressed by the corresponding
immunity.

Iwasa et al. (2004) discussed a case of two strains and 1 epitope (n =
2, m = 1) with the following parameters: β1 = β2 = a1 = a2 = 1, d = 0,
c1 = 1, c2 = 5, p1 = 10, p2 = 1. There is no equilibrium in which both
strain 1 and strain 2 coexist. The equilibrium with strain 1 only is invaded
by mutant strain 2 which replaces strain 1. The evolutionary change makes
the number of uninfected cells at equilibrium 5 times greater than before.
Hence the conjectured statement of monotonic decrease in uninfected cell
number does not hold.

7.8 Discussion

In this paper, we studied the evolution of virus within a patient by analyzing
a series of models for the dynamics of multiple strains of virus and the immune
activities of the host corresponding to those strains. The immune activities
to different antigens may interact with each other. We study both the case in
which immune reaction to an antigen impairs the immune reaction to other
antigens and the case in which the presence of an antigen stimulates the
immune activity to other antigens (cross–immunity).

In most cases studied in the present paper, the directional trends of virus
evolution is proved, which were shown previously for the models without
cross-immunity (Iwasa et al. 2004). The equilibrium abundance of uninfected
cells decreases monotonically in the viral evolution occurs within a host if
controlled by immune selection. It also suggests that the total force of in-
fection increases monotonically with the evolutionary changes of viral strain
composition. The strain diversity and the mean virulence of the virus may
increase statistically, but can decrease for a particular situation. In contrast
the two tendencies we proved are the changes that always occur in those
directions.

Regoes et al. (1998) studied by computer simulation of several different
models in which the presence of a virus strain impair or suppress the immune
reaction on other strains. For all the models studied by Regoes et al., we study
slightly modified versions in the present paper. The modification is on the
assumption of impairment function – the rate of immune activation or decay
is a function of the total number of uninfected cells (

∑n
i=1 yi) in Regoes et al.,

but the total force of infection (
∑n

i=1 βiyi) in the present paper. In addition,
several parameters fixed by Regoes et al., can differ between strains in this
paper.

Although Regoes et al. (1998) focused the case with immunity impair-
ment, we also studied cases with cross–immunity in which a presence of one
strain activate, rather than impair, the immune reaction to other strains.
When cross-immunity is at work, the increase of general viral abundance
should reduce the increase rate of each viral strain, and hence yi = φi(x, Y )
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is likely to be a decreasing function of Y . Hence cross-immunity models,
[Condition 1] is likely to satisfy. In contrast, for models with immune im-
pairment has yi = φi(x, Y ) an increasing function of Y . If the impairment
effect is very strong, Condition 1 is not satisfied, and we will not obtain the
directional evolution suggested by Propositions 1 and 2. This is shown by the
case with (23), which has bistability. Hence the condition for Propositions
is easier to satisfy in the models with cross-immunity than in the ones with
immune impairment.

Whether or not the conditions required for proposition 1 and 2 are suffi-
ciently close to those observed in real immune systems is an important ques-
tion to study in immunology. However given that there are a group of models
describing the interaction between immune reaction to different strains, in
which the evolution of virus population within a single patient is the mono-
tonic increase in pathogenicity, we may be able to have a simple picture of
viral evolution as a first step approximation to reality. After the infection to
a host, the virus might be suppressed by the immune system to a sufficiently
low level, but as the evolution progresses, the viral strains would be replaced
by different strains that would cause increasingly smaller abundance of un-
infected cells, and increasing higher total force of infection. Such a gloomy
picture of viral evolution might be the mainstream path of the things occur-
ring within patient of HIV.

But the mathematical result can also be used to change the direction of
viral evolution. To do so, we need to produce a vaccination of a novel strain
that can cause strong activation of the immune reaction, but not so much
to itself. After receiving such a strain, the total force of infection by viruses
would be reduced and the number of uninfected cells would recover (see Iwasa
et al. 2004). Our results do not hold for general cross-reactive immunity. In
this case, it is possible that viral evolution increases the equilibrium abun-
dance of uninfected cells, reduces viral cytopathicity and reduces the force
of infection. This has important implications for a completely new approach
to anti–viral therapy: persistent infections in a host individual could be com-
bated by introducing specific strains that reduce the extent of disease and/or
eliminate infection (see also Bonhoeffer and Nowak 1994). An ordinary form
of cross-immunity is the one in which the presence of a particular antigen en-
hances the immune activity to other antigens, but it may impair the immune
reaction, as studied by Regoes et al. (1998).
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Appendix A

Proof of Theorem 1

Let A be a group of strains with a positive abundance in the equilibrium.
Let x∗ and Y ∗ be the uninfected cell number and the total force of infection
at the equilibrium. Then from (15): φi(x∗, Y ∗) > 0 for all i ∈ A. We also
have

1 =
∑
i∈A

1
Y ∗βiφi(x∗, Y ∗) , (A.1)

from (16). We consider strain k, which is not in A, invades the equilibrium.
From (19b), if φk(x∗, Y ∗) = 0, the invasion attempt fails. If instead

φk(x∗, Y ∗) > 0 (A.2)

strain k increases when rare. It can invade A (see, (19a)). Then how does the
abundance of uninfected cell number change after such a successful invasion?
We denote B = A ∪ {k}. Let xB and Y B be values in the new equilibrium
after the invasion. Note that some of the strains in set B may have gone
extinct in the new equilibrium. In the new equilibrium, (16) becomes

1 =
∑
i∈A

1
Y B

βiφi(xB , Y B) +
1

Y B
βkφk(xB , Y B) . (A.3)

From (17), we have Y B = λ/xB − d. From (A.2) and (A.3), we have

1 >
∑
i∈A

1
Y B

βiφi(xB , Y B) . (A.4)

Now we can prove xB < x∗, implying that the equilibrium number of
uninfected cells should decrease after a successful invasion. The proof is done
by assuming the opposite inequality xB ≥ x∗ and deriving the contraction.
If xB ≥ x∗, we have Y B ≤ Y ∗ from (17). From Conditions 1 and 2,⌊

The right hand
side of Eq.(A.4)

⌋
=
∑
i∈A

1
Y B

βiφi(xB , Y B) ≥
∑
i∈A

1
Y ∗βiφi(x∗, Y ∗) = 1 ,

(A.5)

where we used (A.1) for the last equality. Combing this and (A.4), we reach
1 > 1, which is the contradiction. Hence we cannot assume xB ≥ x∗, and
hence we conclude xB < x∗.

From (17), Y x = λ − dx holds at equilibrium. Hence the product of Y
and x must increase when x decreases after the invasion of k. (End of proof
of Theorem 1).
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Proof of Theorem 2

Let A be a group of strains with a positive abundance in the equilibrium.
Let x∗ and Y ∗ be the uninfected cell number and the total force of infection
at equilibrium. Then there are two situations:

Case 1 – For all i in A, x∗ > ai/βi, and hence φi(x∗, Y ∗) > 0.
Case 2 – There is one strain j in A, at which x∗ = aj/βj holds. For all the

other trains in A, x∗ > ai/βi and hence φi(x∗, Y ∗) > 0.

For Case 1, we can apply the same argument used to prove Theorem 1 con-
cerning the shift in the equilibrium when an invader succeeds. Hence The-
orem 1 holds, which implies Theorem 2 holds. In the following we focus on
Case 2.

We denote the set of all the strains in A except for j by A′. Hence A =
A′ ∪ {j}. We assume a similar setting as Theorem 1. Then concerning the
abundance of the “boundary strain” j, we have∑

i∈A

1
Y ∗ βiφi(x∗, Y ∗) < 1 <

∑
i∈A

1
Y ∗ βiφi(x∗, Y ∗) +

1
Y ∗βjφj(x∗ + 0, Y ∗) .

(A.6)

Note that φj(x, Y ∗) is discontinuous at x = x∗, and we need to keep x∗ +
0 symbol indicating the limit from above. But for all the strains i in A′,
φi(x, Y ∗) is continuous, which removes symbol for limit from below in (A.6).

If invader k satisfies ak/βk > x∗, the invasion should fail (see (19)). Inva-
sion would be successful when ak/βk < x∗ and hence φk(x∗, Y ∗) > 0.

After such a successful invasion, strain j may still remain in the system at
a positive abundance, or strain j may go extinct. This can be distinguished
into the following two cases:
[Case 2a] If the following inequality holds,∑

i∈A

1
Y ∗ βiφi(x∗, Y ∗) +

1
Y ∗βkφk(x∗, Y ∗) < 1 , (A.7)

strain j still remains in the system in the new equilibrium keeping a reduced
but positive abundance. Then the number of uninfected cells remains x∗, the
same value as before the invasion. The outcome of the invasion is simply
addition of strain k to the community. The abundances of different strains in
the new equilibrium are:

yi = φi(x∗, Y ∗) > 0 , for all i ∈ A′ , (A.8a)
yk = φk(x∗, Y ∗) > 0 , (A.8b)

yj =
1
βj

(
Y ∗ −
∑
i∈A′

βiφi(x∗, Y ∗) − βkφk(x∗, Y ∗)

)
> 0 . (A.8c)
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[Case 2b] In contrast, if∑
i∈A

1
Y ∗βiφi(x∗, Y ∗) +

1
Y ∗βkφk(x∗ − 0, Y ∗) > 1 , (A.9)

strain j cannot be maintained after the invasion of strain k. In this case, we
can apply a similar logic as used in deriving Theorem 1. Let B = A′∪{k}. We
assume the contrary to the inequality to prove: Suppose xB ≥ x∗. From (17),
this leads to Y B ≤ Y ∗. Then, we have

[The left hand side of Eq.(A.7)] =
∑
i∈B

1
Y ∗βiφi(x∗, Y ∗)

≤
∑
i∈B

1
Y B

βiφi(xB , Y B) = 1 ,

which combined with (A.9) leads us to 1 > 1, which is the contradiction.
Hence we conclude xB < x∗. From (17), we have Y BxB > Y ∗x∗.

(End of Proof of Theorem 2)

Appendix B

Here we show φi(x, Y ) for all the models discussed in this paper. In all the
models, (1a) is used for the dynamics of uninfected cells, and (1b) is adopted
for the dynamics of cells infected by strain i. They differ in the dynamics of
zi immune activity specific to strain i.

Model 1 (1c):

φi(x, Y ) =
biβi

cipi

[
x − ai

βi

]
+

. (B.1)

Model 2 (4):

φi(x, Y ) =
bi

ci
H

[
x − ai

βi

]
. (B.2)

Model 3 (7):

φi(x, Y ) =
biβi

cipi

[
x − ai

βi

]
+

(1 + uY ) . (B.3)

Model 4 (8), and Model 5 (11):

φi(x, Y ) =
bi

ci
H

[
x − ai

βi

]
(1 + uY ) . (B.4)
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Model 6 (12):

φi(x, Y ) =
biβi

cipi

[
x − ai

βi

]
+

1
1 + uY

. (B.5)

Model 7 (13):

φi(x, Y ) =
bi

ci
H

[
x − ai

βi

]
1

1 + uY
. (B.6)

Model 8 (21):

φi(x, Y ) =
bi

cix
H

[
x − ai

βi

]
. (B.7)

Model 9 (22):

φi(x, Y ) =
biβi

cipix

[
x − ai

βi

]
+

. (B.8)

For models 1, 3, 6, and 9, we can prove Theorem 1. For model 2, 4, 5, 7 and
8, together with the convention (20) at x = ai/βi, we can prove Theorem 2.
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