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Abstract

Cancer is one of the leading causes of death, but mortality can be reduced by detecting

tumors earlier so that treatment is initiated at a less aggressive stage. The tradeoff between

costs associated with screening and its benefit makes the decision of whom to screen and

when a challenge. To enable comparisons across screening strategies for any cancer type,

we demonstrate a mathematical modeling platform based on the theory of queuing networks

designed for quantifying the benefits of screening strategies. Our methodology can be used

to design optimal screening protocols and to estimate their benefits for specific patient popu-

lations. Our method is amenable to exact analysis, thus circumventing the need for simula-

tions, and is capable of exactly quantifying outcomes given variability in the age of

diagnosis, rate of progression, and screening sensitivity and intervention outcomes. We

demonstrate the power of this methodology by applying it to data from the Surveillance, Epi-

demiology and End Results (SEER) program. Our approach estimates the benefits that vari-

ous novel screening programs would confer to different patient populations, thus enabling

us to formulate an optimal screening allocation and quantify its potential effects for any can-

cer type and intervention.

Author summary

We describe a mathematical modeling methodology that offers quantitative insights into

the potential benefits of screening and other interventions on cancer mortality. Our queu-

ing-theoretic approach represents a potentially useful alternative to more traditional

modeling approaches, in that it can provide more detailed results and entirely circum-

vents the need for simulations. Our methodology can be widely applied to estimate costs

and benefits of screening strategies. By providing a detailed example of our method

applied to epidemiological data, we hope to encourage greater uptake of this methodology

in the community.
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This is a PLOS Computational Biology Methods paper.

Introduction

Cancer is a potentially fatal disease with a large annual incidence worldwide [1]. Since it is the

result of the gradual accumulation of genetic and/or epigenetic changes [2] that eventually

lead to uncontrolled proliferation and dissemination of cells, its stage at diagnosis has a large

impact on a patient’s prognosis [3]. Therefore, diagnosing cancer early through screening can

result in substantially reduced mortality and treatment-associated morbidity [4]. For most

cancer types, sensitive screens remain unavailable [5] and even in cases when screening tech-

nology exists, screens take time, are expensive, and often lead to psychological distress [6], par-

ticularly regarding false positives and possibly overtreatment [7]. In some cases, screening has

not been demonstrated to prolong survival, for instance with PSA screening for prostate can-

cer [8]. These tradeoffs lead to considerations regarding the costs and benefits of different

screening programs. The advent of novel diagnostic tools that can detect signatures of circulat-

ing tumor DNA (ctDNA) in plasma heralds a revolution in early cancer detection [9],[10],

[11],[12],[13]. Using these assays, mutations or epigenetic states of interest can be character-

ized without the need for an invasive biopsy. Innovations such as these advances might make

previously unviable cancer screening programs soon worth pursuing on a more widespread

basis, motivating the development of mathematical models of such potential screening pro-

grams and their optimization based on incidence and survival data.

Quantifying the costs and benefits of screening strategies is necessary for identifying opti-

mum approaches. Many mathematical modeling approaches for designing screening protocols

use ordinary differential equations (i.e., compartmental models) or Markov chains. For

instance, Yaffe et al [14] employ a microsimulation model of mammography screening to

compare the efficacy and cost effectiveness of various breast cancer screening programs. Simi-

larly, Mandelblatt et al [15] use a combination of different simulation models to determine

optimal breast cancer screening strategies, predicting whom to screen and how often. In Alt-

rock et al [16], we develop a simulation approach to determine the effectiveness of screening

schedules for patients with monoclonal gammopathy of undetermined significance (MGUS),

which are at an increased risk for progressing to multiple myeloma (MM). Kobayashi et al [17]

use a Markov model to determine optimal intervals between prostate cancer screens based

upon measurements of prostate specific antigen (PSA). Underwood et al [18] use a stochastic

simulation for PSA-threshold based prostate cancer screening to identify the best policy in

terms of maximizing quality-adjusted life years (QALYs). Similarly, Chen et al [19] determine

the optimal age of performing colonoscopies for colorectal cancer screening using a Markov

model. Berger et al [20] develop a clinical effectiveness model of a fecal-based DNA test that

projects incidence and mortality of colorectal cancer under different intertest intervals using a

5-arm in silico clinical trial. These examples serve as illustrations of various mathematical

modeling approaches for designing and assessing screening programs.

A disadvantage of systems of ODEs is that they are continuous and deterministic, whereas

the populations and state changes they model are discrete and stochastic since phenomena

such as developing a disease are inherently random. When considering only average quantities

of large populations, stochastic models offer little extra over their deterministic counterparts.

However, when populations are small (as in the case of a rare disease or a particular population

subgroup), or considering metrics that go beyond mere averages, such as the variance or tail
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probabilities of a certain outcome, then stochastic models offer additional utility. Markov

chain models assume exponential waiting times, implying that processes that they model are

memoryless, with constant hazard rates. These are very stringent modeling assumptions made

for mathematical simplicity, but they are unrealistic in many settings. For instance, knowing

how long a patient has lived may be very informative about their residual lifetime. These short-

comings of existing methodology lead us to hypothesize that the theory of queuing networks

[21] may be useful for designing improved approaches.

Queuing networks are discrete-valued stochastic processes that track the time evolution of

populations of agents. Unlike Markov chains, they do not necessarily assume exponential wait-

ing times but can be analyzed in a very general setting, yielding analytical expressions of the

full joint stationary probability distribution of the network. Such distributional results are use-

ful for predicting fluctuations in demand—something deterministic models cannot do. These

results can be used to forecast resource allocation such as staffing levels, number of hospital

beds, and others, or the number of insurance claims that will be made which helps when set-

ting premiums or budgeting government resources, both of which depend not only on aver-

ages but on the whole distribution. Additionally, operational laws provide qualitative closed-

form expressions for model outputs in terms of inputs, whereas pure simulation models yield

merely quantitative descriptions (see the Results section for a more in-depth comparison).

Several applications of queuing-theoretic models to healthcare have been developed. Green

[22] use finite server queues to determine the capacity levels of staffing and beds in hospitals to

address the fundamental tradeoff between delay reduction and redundancy. A finite server

queue is one in which there is dependence between different agents’ waiting times due to shar-

ing of limited resources, for example patients competing to book an appointment with an

oncologist. In contrast, infinite server queues represent situations in which agents’ waiting

times are mutually independent; for instance, the time it takes for one patient to develop can-

cer is not usually considered to be influenced by other patients. This independence makes infi-

nite server queues simpler to analyze mathematically than their finite server counterparts.

Finite server models are used to forecast short-term demand for beds in an intensive care unit

in a hospital, where the focus is also on capacity planning [23]. A similar approach is used to

optimize the number of beds in clinical wards with the goal of reducing the number of admis-

sions turned away [24]. The authors study a queuing model with seasonal time-dependent

arrival patterns and made approximations based on simpler infinite server queuing models.

Staff in an emergency department are also a limited resource and as such the optimal alloca-

tion of their time is important for reducing patient wait times while minimizing costs. A queu-

ing network model involving multiple patient types and time-varying demand is used to

match peak staffing levels to peak forecast demand to meet hospital targets [25]. Similarly, a

dynamic resource allocation algorithm based on a queuing network model is employed to

improve patient length-of-stay in an emergency department by altering staffing in response to

demand surges [26].

Infinite server queuing models [27] can be used as a more tractable approximation of finite

server queues: lower bounds on congestion in finite and possibly saturating resource models

are found by considering their infinite resource counterparts. Applications include modeling

the number of inpatients on a ward [28] or in a network of hospital wards [29], traffic of

patients in a hospital [30], and an emergency department with a view to quantifying the proba-

bility that patients must be diverted to another hospital [31]. A queuing network model and

numerical study of colorectal cancer screening [32] is used to derive the capacity needed by a

given system or a given population size to guarantee a certain service level in terms of patient

waiting times to be screened. The model includes imperfect adherence to screening guidelines

and analyzes both routine screening for average-risk patients and the additional resources
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required for surveillance of high-risk patients. Another multiserver, multiphase queuing net-

work model and simulation study of cancer screening [33] is employed to identify optimal

staffing levels and screening frequency in order to assess the impact on reducing the number

and length of overdue screenings. A discrete time queuing model and simulation study investi-

gates various interventions designed to reduce appointment and diagnostic delay in a hospital

after the discovery of suspicious breast tissue [34].

The literature described above focuses on capacity planning such as optimizing the number

of staff and hospital beds in the face of fluctuating demand. In contrast, we use queuing models

for quantifying and comparing the benefits of medical interventions in terms of patient sur-

vival. Many of the papers described above use finite server queues as models of saturating

resources, or infinite server queues as a more tractable but not ideal approximation. In con-

trast, we consider networks containing infinite server queues not as an approximation but as a

phenomenological choice designed to be an exact model of the cancer screening applications.

Infinite server queues act as a natural model for processes in which agents independently

make state transitions in parallel. Specifically, the times it takes individual patients to develop a

tumor are independent of each other. Our approach of exactly calculating performance mea-

sures to describe the outcomes of new screening technologies represents a novel application of

queuing models in healthcare. Simulations are not necessary as we analyze the model exactly

in the stationary regime, allowing us to quantify the benefits of screening and develop an asso-

ciated optimal screening program. We first set out to develop our mathematical modeling plat-

form, which we then apply to the example of pancreatic cancer data before deploying it more

generally to data from different cancer types. R packages on the CRAN repository such as [35]

can be used to numerically analyze queuing network models, which is particularly useful for

large networks.

Materials and methods

Mathematical background

Our mathematical modeling framework is underpinned by the theory of queuing networks

(S1 Appendix). Queuing theory is the formal, mathematical study of networks of waiting lines.

The length of a queue is represented as a non-negative, integer-valued stochastic process. For-

mally a queue is described by detailing an arrival process, a service time distribution, and the

number of servers operating at the head of the queue. This approach is succinctly summarized

by Kendall’s X/Y/Z notation, where X specifies the arrival process, Y the service time distribu-

tion, and Z is the number of servers [36]. For instance, the M/G/1 queue has Markovian

arrivals (a Poisson point process), general (arbitrary) service times, and an infinite number of

servers (meaning all customers are served in parallel). The equilibrium length of the M/G/1

queue with arrival rate λ and mean service time 1/μ has a Poisson distribution with mean λ/μ
[21]. Here we focus on infinite server queues, but in S1 Appendix we discuss examples that go

beyond this paradigm.

A network of J queues is specified by describing the aforementioned aspects of each queue

and the topology, which specifies the allowable state transitions, thereby detailing how custom-

ers are routed between queues. The latter is encoded by a J×J routing matrix R, whose ijth

entry, rij, details the probability of being routed to queue j upon service completion at queue i.
We use the convention that ri0 ¼ 1 �

PJ
j¼1

rij is the probability of exiting the network upon

leaving queue i. External arrivals to our networks are Markovian, such that new agents arrive

according to the increments of independent homogeneous Poisson point processes with rates

η = (η1,. . .,ηJ), but waiting time distributions between state transitions are arbitrary. In particu-

lar, the wait times are not assumed to be Markovian; we only assume that for a given queue j
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they are independent and identically distributed with finite mean 1/μj. The total or aggregate

arrival rates λ = (λ1,. . .,λJ) into each queue are the superposition of exogenous and internally

rerouted arrivals. Formally, λ = η+λR, where all vectors are understood to be row vectors. This

linear simultaneous system of equations is known as the traffic equations.

The stochastic process N(t) = (N1(t),. . .,NJ(t)) describes the number of customers in each

queue of the network over time and under the above assumptions is an instance of a type of

network due to Baskett, Chandy, Muntz and Palacios (a BCMP network) and as such obeys

the BCMP theorem [37]. The full joint stationary distribution of the number of customers in

the network is given by the following input-output relation:

P N�
1
¼ n1; . . . ;N�J ¼ nJ

� �
¼
YJ

j¼1

e� rjrnj
j

j!

when all queues have infinitely many servers, and where ρj = λj/μj and superscript stars denote

stationary quantities. In other words, at equilibrium, each queue in the network behaves as

though it were an independent M/G/1 queue whose length follows a Poisson distribution

with mean ρj.
One performance measure of a network is the average sojourn time, denoted by E(W�)–the

expected time spent in the network at stationarity. This quantity can easily be computed using

linearity of expectation and Little’s Law [38], which relates the average sojourn time to the

average number of customers in the network, denoted E(N�), with the following exact input-

output relation:

E W�ð Þ ¼
EðN�Þ
Z
¼

1

Z

PJ
j¼1
EðN�j Þ ¼

1

Z

PJ
j¼1
rj;

where η is the long run average exogenous arrival rate into the network. See S1 Appendix for

more details of queuing theory. Quantitatively solving the traffic equations and calculating per-

formance measures of a network can be done using R packages such as [35], though the output

they provide is numerical and not algebraic.

The data

We apply our modeling framework to several different datasets from the Surveillance, Epide-

miology and End Results (SEER) program [39], version 8.3.6. Using SEERStat, we obtain data

from the years 2000 to 2016 including cancer of the pancreas, esophagus, kidney, liver, meso-

thelioma, and ovary. The database contains the age at diagnosis, survival and treatment type,

patient age, ancestry and sex. Table 1 provides an overview of the data used.

The mathematical modeling framework

We design a mathematical modeling framework based on the theory of queuing networks (Fig

1, S1 Appendix, including code availability at https://github.com/evanhsph/Dean_et_al). We

consider the scenario of a disease that becomes symptomatic at a late stage, at which point sur-

vival is short (Fig 1A), but for which early screening can result in significantly life-extending

treatment (Fig 1B). We compare a model with different screening scenarios to one with no

screening to ascertain the utility of screening. The model tracks the number of individuals

with undetected early-stage disease, those with detected early-stage disease, and patients with

late-stage disease. Late-stage disease corresponds to the patient data in SEER, which for dis-

eases with no widespread screening (such as pancreatic cancer) are typically diagnosed at a

symptomatic stage. Undetected early-stage disease represents the time from initiation of
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disease until detection (through screening or otherwise). Detected early-stage disease repre-

sents patients that are modeled to have been detected by a novel screen while pre-symptom-

atic. We do not use fine-grained information on clinical stages because SEER does not have

consistently defined staging throughout, but this could be incorporated with cleaner data. For

each disease state, there is a queue in the network representing the size of the population in

that state (for instance early-stage disease). Waiting corresponds to the time that elapses before

a state transition occurs. Patients enter the network and can move between different states of

the network by being screened and found to have early-stage disease, by progressing from

early- to late-stage disease, and by dying; these transition probabilities are described by a rout-

ing matrix.

Solving the traffic equations of the network allows specification of the stationary distribu-

tion for the number of customers in the network; basic performance analysis using Little’s Law

yields the expected sojourn time in the network. This quantity can be interpreted as the

expected residual lifetime, since exiting the network corresponds to death. We then compare

this result to that obtained from an identical network with a different screening schedule to

compare schedules, or to an altered network without screening to assess its effectiveness. The

Table 1. A summary of the SEER cancer incidence data used in the modeling and comparison of putative screening programs.

Esophagus

(N = 56445)

Kidney

(N = 196685)

Liver

(N = 91436)

Mesothelioma

(N = 10092)

Ovary

(N = 85530)

Pancreas

(N = 147680)

Overall

(N = 587868)

Sex

Female 11303 (20.0%) 70726 (36.0%) 22093 (24.2%) 2017 (20.0%) 85530 (100%) 70213 (47.5%) 261882 (44.5%)

Male 45142 (80%) 125959 (64.0%) 69343 (75.8%) 8075 (80.0%) 0 (0%) 77467 (52.5%) 325986 (55.5%)

Age Category

25–29 0 (0%) 592 (0.3%) 0 (0%) 0 (0%) 782 (0.9%) 0 (0%) 1374 (0.2%)

30–34 0 (0%) 1990 (1.0%) 0 (0%) 0 (0%) 1436 (1.7%) 201 (0.1%) 3627 (0.6%)

35–39 212 (0.4%) 4100 (2.1%) 316 (0.3%) 0 (0%) 2165 (2.5%) 713 (0.5%) 7506 (1.3%)

40–44 752 (1.3%) 8098 (4.1%) 1409 (1.5%) 0 (0%) 4429 (5.2%) 2406 (1.6%) 17094 (2.9%)

45–49 2314 (4.1%) 13549 (6.9%) 4900 (5.4%) 104 (1.0%) 7350 (8.6%) 5490 (3.7%) 33707 (5.7%)

50–54 4575 (8.1%) 20016 (10.2%) 10873 (11.9%) 383 (3.8%) 9967 (11.7%) 10214 (6.9%) 56028 (9.5%)

55–59 7097 (12.6%) 25790 (13.1%) 16476 (18.0%) 639 (6.3%) 11187 (13.1%) 15604 (10.6%) 76793 (13.1%)

60–64 8812 (15.6%) 28823 (14.7%) 16431 (18.0%) 1142 (11.3%) 11320 (13.2%) 20251 (13.7%) 86779 (14.8%)

65–69 9593 (17.0%) 29798 (15.2%) 13412 (14.7%) 1533 (15.2%) 10645 (12.4%) 23201 (15.7%) 88182 (15.0%)

70–74 8893 (15.8%) 26132 (13.3%) 11126 (12.2%) 1936 (19.2%) 9778 (11.4%) 24112 (16.3%) 81977 (13.9%)

75–79 8089 (14.3%) 22219 (11.3%) 9551 (10.4%) 2298 (22.8%) 8913 (10.4%) 24190 (16.4%) 75260 (12.8%)

80–84 6108 (10.8%) 15578 (7.9%) 6942 (7.6%) 2057 (20.4%) 7558 (8.8%) 21298 (14.4%) 59541 (10.1%)

Ancestry

African American 6668 (11.8%) 22642 (11.5%) 12026 (13.2%) 0 (0%) 6885 (8.0%) 18091 (12.3%) 66312 (11.3%)

Asian/ Pacific

Islander

1934 (3.4%) 9021 (4.6%) 14454 (15.8%) 0 (0%) 6183 (7.2%) 9716 (6.6%) 41308 (7.0%)

Caucasian 44149 (78.2%) 139920 (71.1%) 47688 (52.2%) 9414 (93.3%) 62426 (73.0%) 105221 (71.2%) 408818 (69.5%)

Hispanic 3694 (6.5%) 25102 (12.8%) 17268 (18.9%) 678 (6.7%) 10036 (11.7%) 14652 (9.9%) 71430 (12.2%)

Survival (months)

Mean (SD) 25.3 (36.6) 77.3 (53.1) 22.5 (32.7) 16.1 (22.1) 56.6 (51.3) 13.5 (23.6) 43.7 (50.2)

Median [Min,

Max]

10.0 [0,199] 75.1 [0,203] 8.13 [0,195] 9.00 [0,185] 43.8 [0,198] 5.00 [0,193] 20.0 [0,203]

We investigate six cancer types (esophagus, kidney, liver, mesothelioma, ovary, and pancreas) which currently do not have screening programs for the general

population. We display a summary of the incidence data stratified by age, sex and ancestry and report summary statistics of survival. Absolute numbers appear on the

left with percentages in parentheses.

https://doi.org/10.1371/journal.pcbi.1010179.t001
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difference in expected residual lifetime in a network with screening and its counterpart with-

out screening represents the expected residual lifetime gain. Once these closed-form expres-

sions of improvement are found, we fit parameters using the data to obtain one parameter set

for each relevant set of covariates; this approach yields numerical scores for the expected resid-

ual lifetime gain for each relevant subgroup of the population (Fig 1C). Note that the per can-

cer patient benefit is not the same as the per screen benefit. Since most patients screened do

not have cancer, the benefit per screen is significantly lower than the benefit per cancer patient

screened; a calculation of the per screen benefit incorporates an estimate of incidence. Our

model tracks the number of cancer patients in various disease states so reported lifetime gains

are measured per cancer patient.

Parameter estimation

We utilize the SEER data for parameter estimation of our models. For the model without

screening, we estimate the rate at which patients are diagnosed with cancer, the fraction that

receive treatment before dying, the average time between diagnosis and treatment initiation,

and the average time that patients receiving treatment survive. Note that the latter two quanti-

ties cannot be understood, in general, as rates, since the waiting time distributions modeled

are much more general. For the model with screening, we additionally assign parameter values

for the fraction of patients that are successfully screened and the average survival time for

patients that are treated early because of screening. To assign parameters for the scenario

Fig 1. Outline of the modeling framework. (A) Consider a disease with poor survival which is typically detected late due to the onset of symptoms but for which early

detection could improve survival. The number of individuals in each disease state is modeled by the occupancy of a queue. Analysis of the queuing network yields an

estimate of overall survival. (B) Comparison of the results obtained from a network with and without screening allows quantification of the potential screening benefit. (C)

Each population subgroup has its own identically structured model parameterized using available data stratified by relevant covariates such as age and sex. Population

subgroups identified by relevant covariates are labeled A, B, C, etc. We then use these estimates to obtain numerical scores for an effectiveness metric of screening various

groups, which suggests an optimal allocation strategy: rank subgroups by their scores and apply screening in the order of the ranking until exhaustion of screens or until

screening is no longer considered cost effective for that survival benefit. (D) We then compare multiple different screening programs or potential screens of differing

effectiveness levels, enumerated I, II, etc., for the various population subgroups A, B, C, etc., identified by covariates.

https://doi.org/10.1371/journal.pcbi.1010179.g001
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involving screening, we transform the original data to generate synthetic data based on an

assumption of the effectiveness of the intervention enabled by early detection. For instance, an

early-detected cancer patient might have double the survival of a patient who did not opt for

screening, with the factor 2 being a parameter in the model. This parameter can be changed

and the effects of changes on model predictions investigated.

The fraction of patients that receive treatment before dying is calculated by averaging over

the empirical fraction of patients in the SEER database that receive treatment each year from

2000 to 2016. The average time that patients receiving treatment survive is calculated by aver-

aging over the difference between the date of death and the date of treatment initiation of all

patients who receive treatment. The rate per year at which patients are diagnosed with cancer

is determined by the average incidence data by year, where we average over the numbers in

each year from 2000 up to 2016. To estimate the number of patients that develop cancer (ini-

tially undiagnosed) we use the incidence average as an approximation, which might suffer

from a (small) underestimation stemming from those patients that died, whether from cancer

or another cause, before diagnosis. The older the population subgroup, the worse this approxi-

mation becomes as more people die of competing risks. This effect could be corrected for by

estimating the number of deaths from competing causes between tumor initiation and diagno-

sis for each population subgroup; however, in all but the very oldest age groups this effect is

small and does not change the relative ordering of overall survival estimates. The average time

that patients receiving treatment survive is estimated by the average survival time from the

SEER data. This approach is affected by the right-censoring of the data, in that many patients

from the dataset are still alive. For these patients we impute survival times using conditional

empirical survival distributions, i.e., using data on patients who have died, we calculate how

long they typically survive, given that they had survived a certain amount of time. We make a

similar adjustment when modeling screening and the survival benefits it confers. If a patient

has cancer detected early as a result of screening and then lives to their residual life expectancy

(or a certain fraction thereof), then this modeled residual survival time stems from their condi-

tional life expectancy given they have lived to their current age. The data for the conditional

life expectancies are extracted from [40],[41] and are stratified into patient groups up to age

64, 65-74-year-olds, and people aged 75 and up for each ancestry and sex combination. This

discrete stratification results in a slight artificial upward bump in estimated survival times at

age 65. Discretizing in this way means that our results do not quite match the monotonically

decreasing trend that one expects. With more fine-grained data on conditional life expectan-

cies, one could avoid such artifacts.

Another potential censoring issue arises from the fact that separate models track the num-

ber of individuals of each age group and that individuals’ age category changes over time.

Compartmental and Markov chain models face the same issue. To adjust for this effect, sepa-

rate models do not track the number of patients of a certain age, but the number who devel-

oped disease at a certain age. Thus, there is no flux of individuals between models or age

categories over time.

An alternative approach is to reinterpret exiting the network as either dying or aging out of

that age category; this implies that customers entering the network represent new cancer

patients or existing patients entering that age category. Another alternative is to route custom-

ers between a succession of networks as agents change age category. If the typical sojourn time

in the network is significantly shorter than the age range covered (as can be the case with can-

cers with poor survival), then these adjustments make little difference. Otherwise, we can

coarsen the age groups to cover a longer period. As with other mathematical models of screen-

ing, it is often necessary to estimate when people first develop cancer, or when they have can-

cer that is detectable by screening. An example in the setting of pancreatic cancer is given by
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the modeling in [42]. Because our model calculates overall survival estimates based on adjusted

life expectancies, these estimates are not confounded by lead time bias.

We do not have reliable information on the average time between diagnosis and the start of

treatment, and this quantity can vary substantially between different institutions and geo-

graphic locations. This value is therefore represented by a tunable parameter in the model.

Because the queuing model makes no assumptions about the parametric form of waiting time

distributions or distributions governing routing probabilities, we cannot use standard methods

such as maximum likelihood estimation or method of moments because there is no assumed

likelihood or particular distribution whose moments are known. Averages are calculated from

empirical means and routing probabilities from empirical proportions. This level of simplicity

and transparency is a welcome feature of this modeling approach.

An optimal allocation algorithm

Given the modeling framework and parameter estimation method outlined above, we then uti-

lize the patient data described in the Data section to estimate parameters of the models and

quantify the benefits of screening. Since information is available on patient characteristics

such as sex, ancestry, and age, we estimate a separate parameter set specific for each population

subgroup. This approach leads us to design an optimal allocation algorithm consisting of the

following steps: 1. Set a minimal lifetime gain T above which the screen is considered worth-

while. 2. Consider the subgroup with the highest modeled lifetime gain. If this exceeds T, then

allocate screens to this group. 3. If there are more screens available than members of this first

subgroup, then consider the second ranked group. If their lifetime gain exceeds T, then allocate

screens to them. 4. Repeat this process of saturating the next highest ranked subgroups until

exhaustion or until the survival benefit from screening falls below T. Extensions of this algo-

rithm such as repeated screens are discussed in S1 Appendix and depend on the level of depen-

dence between test outcomes on an individual patient. This approach can be used to compare

the presence or absence of a screening schedule as well as to compare various screening sched-

ules against each other. Fig 1D shows a comparison of four different hypothetical screening

schedules, for instance represented by potential screens with differing detection probabilities

and resultant survival benefits in arbitrary population subgroups. The algorithm described

above aims to maximize the number of life years saved as a representative example of our

approach, but there are other potential considerations when designing a screening program;

for instance, one may choose to spread screens evenly across different population subgroups

with different ancestries. Survival estimates here are based on observational data, which may

be confounded by socio-economic status, access to care, quality of care etc. Survival estimates

may be improved if randomized controlled trial data was available.

Treatment-associated morbidity and mortality and test specificity

Morbidity, mortality, and test specificity can naturally be incorporated into our modeling

framework. Morbidity associated with cancer treatment [4] is modeled by multiplying survival

times (i.e., sojourn times) by a QALY factor between zero and one, thus reweighting the sur-

vival period by its quality. A multiplicative factor of one represents no reduction in quality of

life, while smaller factors represent treatment-associated morbidity. If side effects are just tem-

porary, then the period when they occur is reweighted by a factor less than one, but the period

afterwards is not. As an example, Fig B in S1 Appendix shows quality adjusted survival for

patients treated early for pancreatic cancer. As morbidity increases, the QALY factor drops,

resulting in reduced quality-adjusted survival due to early screening. Treatment-associated
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morbidity is likely to depend on the cancer stage at detection, which can be considered in our

approach.

Treatment-associated mortality is incorporated by adjusting the service time distribution

corresponding to the treated population. If p is the probability of treatment-induced mortality,

then with probability p the service time is very short, representing premature death, and with

probability 1−p it is the original service time distribution. The probability p and the reduced

service time distribution (a point mass at one month) are both tunable parameters. The reason

for the latter placeholder is that we do not have information on treatment-associated mortality

when patients are diagnosed earlier due to a hypothetical screen. However, the exact distribu-

tion selected has far less influence on the average survival than the probability p. Fig C in S1

Appendix displays the average survival gain from early screening for pancreatic cancer for

varying mortality and treatment effectiveness. The higher the risk of mortality, the lower the

average survival gains become when holding treatment effectiveness constant. Treatment-

associated mortality likely depends on the cancer stage at diagnosis; while the mortality risk of

pancreatic resection may be high, early detection may result in less risky surgery or less aggres-

sive chemotherapy than the risk associated with aggressive treatment such as a pancreatectomy

[43].

As the specificity of a screen decreases, there are more false positives which can result in

financial or psychological costs and treatment-related morbidity and mortality. To incorporate

this feature into our methodology, we modify the network topology and the routing probabili-

ties. We split the early treatment queue into separate queues for false positives and true posi-

tives which have different service time distributions. In practice a confirmatory test or scan is

used following a positive screen result before commencing any treatment, which corresponds

to adding another queue that is routed to from queues representing positive screen results, and

from which negative scans would be routed or rerouted to a queue representing the healthy

population. Since cancer is rare, even a small rate of false positives could lead to many healthy

people requiring confirmatory scans. A fraction of those might still be false positives and

unnecessarily treated and therefore, population level screening can be problematic, and a

more targeted approach based on risk factors such as family history or chronic disease may be

preferred [44]. If test errors are uncorrelated or weakly correlated, then rescreening may elimi-

nate many false positives.

Fig D in S1 Appendix considers a pancreatic screening program under various false positive

rates and levels of treatment effectiveness. These rates are a tunable parameter of the model

but are low in the example used because we suppose that the confirmatory scan is very specific.

Census data is used to estimate the number of healthy individuals in this subgroup [45] and

SEER data [39] for the number of pancreatic cancer patients. The false positive individuals

experience reduced survival times by a tunable parameter. Lowering specificity reduces the net

benefits of screening due to more overtreatment. This net score is negative when early screen-

ing causes overtreatment of healthy individuals to outweigh the benefits of earlier detection.

Results

Assessing the benefits of pancreatic cancer screening

Pancreatic ductal adenocarcinoma is a particularly deadly form of cancer with limited treat-

ment options and low overall survival [46],[47],[2]. By the time it is detected, it has often pro-

gressed to metastatic disease with poor prognosis [48], [49]. Currently no widespread

pancreatic cancer screen is available, but several approaches are under investigation, for

instance a cell free DNA-based screen for early diagnosis [50]. With early detection, pancreatic

cancer patients may receive potentially curative treatment [51], and evidence from genomic
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sequencing indicates a 15-year period of genetic progression from disease initiation to the met-

astatic stage, suggesting a sizable window during which screening would be beneficial [52].

Screening for PDAC is not standard amongst the general population because of its low inci-

dence and lack of a highly sensitive and specific test [53]. However, high-risk individuals, i.e.

those with a family history, genetic predisposition or chronic disease, generally have access to

screening modalities [44]. Previous approaches investigate the effectiveness of endoscopic

screening of high-risk individuals [54] and the potential benefits of biannual MRI scans [55].

We first model the potential utility of a novel pancreatic cancer screen under different sce-

narios of its ability to detect early-stage cancer and the resultant survival benefits per cancer

patient. To this end, we compare the results of a queuing network with screening to one with-

out. Exact analysis of these queuing networks yields qualitative descriptions of the screening

benefits in terms of model parameters for each population subgroup. This analysis is per-

formed as outlined in detail in sections 2.3 and 2.4 in S1 Appendix, where equation (2) displays

exact distributional results for the number of individuals in each state and equations (3), (4),

and (5) show exact input-output relations between model parameters and quantities of inter-

est. We first use the network without screening to estimate parameters from the SEER pancre-

atic cancer epidemiological data. Since we cannot estimate the effectiveness of a hypothetical

screening strategy directly from the data, we investigate this quantity by adjusting model

parameters as follows. For our purposes there are two most relevant axes along which a screen-

ing program can be assessed; its ability to detect early-stage cancer and the survival benefit

conferred given that a cancer is successfully detected by screening at an early stage. The latter

we define to be ‘effectiveness’ and measure it on a percentage scale representing how much life

expectancy is added compared to a healthy individual of that group. For ease of discussion, we

here set specificity to 100%, although this is a parameter of the model that can be adjusted. We

consider several different screening scenarios by varying the detection probability and

effectiveness.

In our model, we stratify the population into subgroups according to clinically relevant

covariates to the extent that they are available in the epidemiological data. If a subgroup falls

below 100 subjects, then we exclude it from the analysis: for instance, Native Alaskans and peo-

ple under 25. The reason for choosing this level of granularity is that grouping too coarsely

may mask potentially relevant differences within a subgroup, whereas grouping too finely

yields smaller sample sizes and therefore less reliable statistical parameter estimates.

We first investigate the scenario in which screening effectiveness is 75%. When using the

SEER pancreatic cancer data for estimating the screening benefits, we find that younger

patients experience the largest benefit per positive case detected (Fig 2A). This finding is

expected since younger patients live longer upon receiving treatment than older patients, and

the model provides an exact quantification of this relationship. For example, 30–34-year-old

Caucasian females can expect to live over 30 more years on average (first and third quartiles

28.5 and 31.5 respectively), whereas their 50–54-year-old counterparts on average gain about

20 life years (IQR of 33 months) under these modeling assumptions. We find that 60-64-year-

old Hispanic males can expect to live about 11 years extra on average, whereas their Caucasian

counterparts are predicted to live for an additional 9 years on average (both have IQR of about

3 years). This observation reflects the modeling assumption that individuals live to a percent-

age of their respective life expectancies, which differ by group. We find that age is the domi-

nant covariate (Pearson correlation -0.6 with modeled survival) when determining survival.

The framework can be used to investigate alternative scenarios, for instance those in which

there is differential effectiveness or uptake depending on ancestry, sex, or age.

We next compare several different screening programs with a constraint on the total num-

ber of screens available (Fig 2B). For instance, for a given level of effectiveness (e.g., 75%) we
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Fig 2. Survival benefits of screening for pancreatic cancer under a range of scenarios. (A) Overall survival benefit conferred from an example scenario of

pancreatic cancer screening stratified by sex, ancestry, and age assuming that early screening never yields false negatives and identifies cancer early enough to achieve

75% effectiveness (survival to 75% of the average life expectancy for that group on average). The slight upward bump at age 65 is due to the conditional survival

distribution given having lived to a certain age and its discrete stratification (Materials and Methods). (B) Under the assumptions of panel A we compare various

screening programs targeted at different population subgroups based on age and ancestry. The survival benefit per pancreatic cancer screen (i.e., incidence adjusted)

is shown. (C) Survival curves comparing overall survival from screens with different levels of effectiveness and the unscreened. (D) Difference in overall survival with

(right dot) and without (left dot) screening for Hispanic women under assumptions of panel A. (E) Overall survival benefit for Caucasian women, aged 50–54 as a

function of screen detection probability and resultant treatment effectiveness. The color of the heatmap represents the expected residual lifetime gain and is calculated

exactly from the model. (F) Overall survival benefit to African American men, aged 65–69 as a function of model parameters: detection probability and resultant

treatment effectiveness. Each contour represents a different scenario of benefit of early detection. Increasing the screen sensitivity and resultant treatment

effectiveness can drastically change predicted overall survival.

https://doi.org/10.1371/journal.pcbi.1010179.g002
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investigate the effects of allocating a fixed number of screens across different population sub-

groups and display the survival benefit achieved per screen (not per cancer patient). Data on

differential incidence is obtained from [45]. When investigating the differential impact of

screening for pancreatic cancer, we find that the largest benefit is achieved by screening older

patients (those over 55) since their incidence is significantly higher, and therefore fewer

screens are needed to identify each positive case. For instance, on average, screening Asian

and Pacific Islanders aged 55 and over confers 0.6 days of extra life per screen, whereas screen-

ing their younger counterparts achieves just under 0.1 days extra per screen. This age relation-

ship based on differential incidence is found across ancestries. The findings of this comparison

suggest that targeting subsections of the population can vastly increase the benefit of a screen-

ing program. Our results imply that screening Asian and Pacific Islanders over 55 would be

most efficacious. However, if there are more screens available than the size of that group, then

our results suggest that other over 55-year-olds of different ancestries would be the next most

efficacious groups to screen (Fig 2B).

We then investigate the survival benefit of screening depending on the screening effective-

ness (Fig 2C). When averaging over all population subgroups (Fig 2A), we find that, as

expected, a more effective screen increases the survival benefit linearly, and our model allows

us to quantify this relationship. For instance, the 10-year survival probability of unscreened

individuals is approximately 7%, whereas under the assumption of 100% screening effective-

ness it is around 65%. When investigating specific population subgroups, we again observe

that more effective screens lead to a bigger survival benefit, but the quantitative estimate of the

benefit depends on sex, age and ancestry. The predicted survival of female Hispanic pancreatic

cancer patients of different ages with and without screening is shown in Fig 2D while all other

groups are displayed in Fig E-J in S1 Appendix. The left point of the dumbbell represents sur-

vival without screening and the right point is with a screen of 75% effectiveness. In general, we

find that younger patients enjoy a larger benefit per positive case detected from screening than

older patients. Based on these results, we predict for instance that 40–44-year-old Hispanic

women on average gain around 36 life years per positive case detected, compared to less than

15 years for their 70–74-year-old counterparts (Fig 2D).

An advantage of the queuing network approach is the ability to exactly analyze the relation-

ship between inputs and outputs (see equations (3)-(5) in S1 Appendix). This ability allows us

to investigate how changing one input model parameter influences the results while holding

all other parameters fixed. The results for 50-54-year-old Caucasian women and 65-69-year-

old African American men are shown in Fig 2E and 2F as representative examples. The heat-

map in Fig 2E shows the exact modeled average survival gain per patient detected from screen-

ing calculated analytically from the model. We find that increasing the sensitivity of the screen

from 50% to 100% increases survival by about 10 years under the most effective scenario

(100% effectiveness). In Fig 2F, each contour represents a different screening effectiveness as

the detection probability is varied. We find that changing the effectiveness or sensitivity of the

screen can drastically alter predicted overall survival. For instance, when the probability of

detection is 100%, a change of effectiveness from 50% to 100% changes the expected residual

lifetime gain from about 9 to about 18 years.

Testing distributional predictions of the BCMP theorem

One advantage of the queuing-theoretic approach is the distributional description we can

obtain (see equation (2) in S1 Appendix), which is useful when considering aspects of perfor-

mance that go beyond averages, such as peak-load planning under conditions of stochastic

demand. We would like to know, for example, not just how many early diagnoses would be
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made on average with a novel pancreatic cancer screen, but also the variability around this esti-

mate. The BCMP theorem is the tool that allows for distributional predictions, but it applies

only when certain assumptions are met [37]. To test the predictions of the theorem we con-

sider the example of the number of pancreatic cancer diagnoses and resulting surgeries for

patients. We cannot use the screening model from above to test predictions because we do not

have data from this hypothetical screening program. Instead, we use an example where we do

have data so that we can validate distributional results. Fig 3A shows a schematic representa-

tion of the model used to find predicted distributions.

Let N1(t) represent the number of individuals diagnosed with pancreatic cancer that have

not received surgery as part of their treatment up to time t and N2(t) the number that have. We

think of N1(t) and N2(t) as stochastic processes tracking the length of two infinite server

queues. New diagnoses arrive according to a Poisson process of rate η1. Individuals with the

disease (not treated with surgery) either die or receive surgery after random times whose

means are 1/μ10 and 1/μ12 respectively. Hence, the random time until exit of an individual

from the first queue is given by 1/μ1 ≔ 1/(μ10+μ12). A fraction r10 die and r12 receive surgery,

hence r10+r12 = 1, and we set r10 ¼
m10

m10þm12
and r12 ¼

m12

m10þm12
. We solve the traffic equations,

parameterized in this case by:

R ¼
0 r12

0 0

 !

and η ¼
Z1

0

 !
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l1
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By the BCMP theorem, this relationship in turn means that N�
1
� Poisson Z1

m1

� �
and

N�
2
� Poisson r12Z1

m2

� �
. These are the predicted theoretical distributions for the number of indi-

viduals in each state. Note that we are not assuming exponential waiting times, so the stochas-

tic processes N1(t) and N2(t) are not Markov chains and thus these distributional results

cannot be derived with Markov chain methods under the same assumptions. For each popula-

tion subgroup we estimate the parameters as detailed in the Materials and Methods section.

We then compare the predicted distributions from the queuing model (one for each subgroup

for each queue) to the empirically observed distributions from the SEER data. The predicted

distributions are calculated solely based on incidence averages of the data from 2000–2016,

and not on any other aspects of the data itself (such as raw counts which are the basis of empir-

ical distributions). Fig 3B and 3C show the predicted and empirical distributions for N�
1

and

N�
2

for one example population subgroup, African American women aged 75–79; all others are

shown in Fig K-N and O-R in S1 Appendix for the first and second queue, respectively. The

predicted and empirical distributions are both discrete, but we smooth out the probability

mass functions for ease of visualization.

We additionally formally test whether the empirical and predicted distributions can be dis-

tinguished using the Kolmogorov-Smirnov test at the Bonferroni adjusted 5% level. We find

that in only one case out of 76 population subgroups (Caucasian females aged 65–69) are there

statistically significant differences to reject the null hypothesis that both distributions are the

same. This corresponds to when the assumptions of Markovian exogenous arrivals of the

BCMP theorem are a less good fit. Even in other cases where the predicted and empirical dis-

tribution are not statistically significantly different, the goodness of fit tends to correspond to

how well the arrival data match the Markovian assumption (Table A in S1 Appendix). To

assess this assumption formally, we test with the K-S test at the adjusted 5% level whether the

number of exogenous arrivals for a period of fixed length are Poisson distributed as would be
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Fig 3. Distributional descriptions of the modeling framework. (A) Schematic queuing model of pancreatic cancer diagnosis and surgery. (B) Testing the distributional

predictions of the BCMP theorem for the number of diagnosed pancreatic cancer cases among African American women aged 75–79 awaiting surgery as a particular

example. We compare the predicted distribution of N�
1

from the model and the empirical distribution of this quantity from the incidence data. Probability mass functions

are kernel smoothed to ease visualization. (C) Testing distributional model predictions for the number of African American women aged 75–79 with pancreatic cancer

each year who receive surgery, N�
2
, against the empirical distribution from the data. (D) Testing whether pancreatic cancer diagnoses of African American women aged

75–79 follow the Markovian assumption for exogenous arrivals required by the BCMP theorem. (E) A model comparison of how waiting time distributions are

approximated. A deterministic model uses the average only, Markov models approximate by the best fitting exponential distribution, whereas simulations and queuing

models can use the ‘true’ distribution–in this case a lognormal distribution. (F) Comparing how a mixture waiting time distribution is modeled.

https://doi.org/10.1371/journal.pcbi.1010179.g003
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the case for a Poisson point process. To do so we set a time interval of length one year and

then check whether the number of arrival increments during that period across different years

follow a Poisson distribution with a mean given by the estimated arrival rate multiplied by the

time period. This is necessary (but not sufficient) to be a Poisson process, so if this is violated

then certainly the assumption of Markovian arrivals is too. Fig 3D shows an example of this

comparison for African American women aged 75–79. Results for all other population sub-

groups are in Fig S-V in S1 Appendix.

The benefits of queuing network models and a model comparison

There are several advantages of queuing models over their simulation, ODE and Markov chain

counterparts. Table 2 shows a summary of differences between these modeling approaches.

Note, the table details what the methods can do, not how they are used in every instance. For

example, there are exact stochastic simulation models, but also some which are (justifiably)

deterministic and approximate. Similarly, although some ODEs, Markov chains, and queuing

network models are too complicated to analyze exactly (and in these instances are presumably

not intended to be), they often can be.

The number of customers in a queue is discrete, whereas a compartmental ODE model

assumes all quantities are continuous, which is a poor approximation when numbers are

small. For example, in a discrete model there may be one or two patients waiting to see the

oncologist, but in a continuous model the effect of a non-integer number of patients waiting is

included. The difference in modeling 1000 and 1000.36 patients is trivial, but the difference

between 1 and 1.36 may not be. Whether this is an issue for our setting depends on the size of

the population subgroup considered and the incidence of the specific cancer type. Similarly,

the deterministic nature of ODEs is not an issue when considering aggregate measures of large

populations. However, stochastic models can be useful for small populations (such as the num-

ber of patients with a rare disease waiting to see an oncologist) or when investigating metrics

involving aspects of a distribution other than the mean, such as those relevant to resource allo-

cation (staffing levels, number of hospital beds etc.), which depend not only on averages but

on fluctuations.

Closed form expressions for distributions allow us to calculate exact probabilities of events

of interest, including those more extreme than any observation seen so far–something that is

difficult to approach with purely statistical methods. For instance, what is the probability of

seeing twice the number of pancreatic cancer diagnoses in a year as has been seen before in the

20 years of collecting data? Whether this probability is 10−2 or 10−6 matters when planning for

fluctuating demand and tradeoffs regarding the cost of redundant resources. Estimating such

probabilities can be impractical with simulation models as each replicate must be run for a

long time to observe such extreme values, which can be computationally expensive for

Table 2. Summary Comparison of Modeling Techniques.

Modeling Technique

Property Simulation ODE Markov Chain Queuing Network

Discrete Yes No Yes Yes

Stochastic Yes No Yes Yes

Wait Times Arbitrary Deterministic Exponential Arbitrary

Distributions No No Yes Yes

Exact Formulae No Yes Yes Yes

A comparison of the advantages and disadvantages of simulation, ODE, Markov chain and queuing network models.

https://doi.org/10.1371/journal.pcbi.1010179.t002
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complicated models with large agent populations. Using the model from Fig 3A as an example,

we observe that the distributional results immediately yield the exact tail probability in terms

of the model parameters:

P N�
1
> x

� �
¼ e�
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m1

P1
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� �k
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� �k

k!
; for any x � 0:

It is tempting to calculate the steady state abundances of the compartmental model and

claim that a reasonable stochastic approximation is that each steady state quantity follows a

Poisson distribution with the calculated means (essentially justified by a Binomial approxima-

tion to the number of individuals in each state, with fixed probabilities of transit to each subse-

quent state, and then approximating this Binomial distribution by a Poisson distribution with

matching mean). However, this approximation is invalid when there is a finite server queue in

the network, such as patients waiting to see an oncologist or use an MRI machine which are

more appropriately modeled by finite server queues (section 2.5 in S1 Appendix). The queuing

approach of applying the BCMP theorem still works in this more general setting.

A stochastic model that extends the compartmental model is a Markov chain model. The

rates of the ODEs become parameters of exponential waiting times. Queuing models are more

general than Markov models, relaxing distributional assumptions on waiting times. These

models are not restricted to constant hazard rates, but can use arbitrary waiting time distribu-

tions, provided they are supported on the positive real numbers and have finite mean. When

fitting parameters, we do not have to know (potentially complicated) hazard rates of certain

events, but simply their mean waiting times, i.e., we can use the empirical wait time distribu-

tion directly rather than a parametric model that requires fitting. In the Markov chain case,

rates and the reciprocal of means coincide. But in general, this need not be true. This generali-

zation includes more complicated models (such as those that vary with time) that Markov

chains cannot handle (in that distributional results are lost under these more flexible assump-

tions). For instance, the hazard rate until individuals die typically increases over time. A mem-

oryless exponential waiting time with a fixed rate is evidently a poor model for such a

phenomenon.

Fig 3E and 3F show examples of waiting time distributions that are poorly approximated by

the Markovian assumption. The queuing model uses the ’true’ distribution which in this case

is log-normal and a mixture of uniform distributions, respectively. The Markov model fits the

closest exponential distribution, with maximum likelihood suggesting estimating the rate by

the reciprocal of the mean of the ’true’ waiting time distribution. The blue line shows the aver-

age wait time, which is all a deterministic model can capture of the ’true’ wait time distribu-

tion. The distribution in Fig 3F is pathological by design but shows that some distributions can

result in a deterministic model that assumes wait times are a certain average value that occurs

with probability zero. Even the best fitting Markovian distribution can be substantially inaccu-

rate. For example, the log-normal distribution of Fig 3E with mean and standard deviation on

the log scale of 1 and 1.3 respectively, has variance equal to 183.75, whereas the best fitting

exponential distribution has variance of just 40.47. Similarly, the distribution in Fig 3F assigns

zero probability to the service time being between ½ and 1, but the best fitting exponential

assigns probability 0.135 to this possibility.

For complicated mathematical reasons (see [56]) the stationary distribution of the BCMP

queuing network often coincides with that of the equivalent Markov chain. Here equivalent

means replacing all service time distributions by exponential distributions with the same

mean. This property of certain queuing models is called the Insensitivity Property, so named

because the stationary distribution is insensitive to finer details of the service time distribution.
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So, an equivalent Markov model often fortuitously leads to the same distributional results.

However, there are queuing network models for which this is not the case, though a discussion

of sufficient conditions to possess this property is beyond the scope of this article (see [57]).

In fact, if one simply wishes to calculate stationary averages then numerical scores resulting

from compartmental models, Markov chains, simulations, and queues all ought to coincide—

compare equations (1) and (2) in S1 Appendix for example. This means that certain figures,

such as Fig 2A would look identical under many different model types. We do not display

identical plots from different models, but present a more nuanced discussion of modeling dif-

ferences. The reason that we show some plots that could equally be generated using other tech-

niques is twofold: firstly, some stationary averages are integral to the application–as decisions

related to screening depend upon large populations, it is only natural that one compares aggre-

gate metrics. Secondly, that the aggregate measures can be easily computed using the same

queuing framework is convenient. We need not resort to another model or make more strin-

gent assumptions to obtain these results. A priori it is not always clear how robust certain

results are to assumptions, so obtaining identical results in a more general setting is

informative.

Some outputs of these models are not commensurable—for example, distributional charac-

terizations possible with exactly solvable queuing networks and Markov chains cannot be com-

pared with ODEs which yield no such descriptions. Similarly, simulations may yield empirical

distributions based on performing many replicates, but these do not offer the same qualitative

descriptions as distributions with exact formulae for their parameters. The same is true of

exact input-output relations of the queuing model that result from operational laws, such as

those in equations (3)-(5) and (7)-(10) in S1 Appendix; simulations may produce the same

quantitative answers but cannot provide the qualitative formulae that give a deeper under-

standing. This is an important difference but not one that is easily visualized. The other main

difference of these modeling approaches (again not readily amenable to comparisons in plots)

is the process required to use them. Analyzing the queuing network involves simple pen and

paper calculations, whereas agent-based simulation models require writing code and (poten-

tially) lots of compute time.

On our GitHub page we offer a simple example of a stochastic simulation of a two-compart-

ment model. All wait times are exponential, so this is a simulated Markov chain. The approxi-

mate run times of the simulation for different agent populations are shown in Table 3. The run

time depends on the efficiency of the code and the machine it runs on (using our code one can

test the compute time on their machine), so the values in this table should be thought of as an

illustration rather than a fixed benchmark. The compute time is linear in the number of agents,

so simulating a large population (such as screening all 40-50-year-olds for cancer) can be time

consuming. Moreover, using larger and more complicated networks increases run times fur-

ther. The pen and paper approaches are solved in the abstract and so do not depend on popula-

tion sizes (until parameter estimation, which is the same across all approaches).

Table 3. Scaling of Compute Time with Size.

Compute Time

Simulation Size Simulation ODE Markov Chain Queuing Network

105 Agents 12 seconds Instantaneous Instantaneous Instantaneous

106 Agents 2 minutes Instantaneous Instantaneous Instantaneous

107 Agents 20 minutes Instantaneous Instantaneous Instantaneous

108 Agents 3.3 hours Instantaneous Instantaneous Instantaneous

A comparison of time taken to calculate model outputs for populations of different sizes.

https://doi.org/10.1371/journal.pcbi.1010179.t003
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Investigation of screening for different cancer types

We apply our modeling methodology to five other cancer types for which there are no wide-

spread screening programs for the general population. Using SEER epidemiological data for

these cancer types, we investigate the potential benefits of novel putative screening programs

(Fig 4 and Fig W-X in S1 Appendix). These curves are determined as in Fig 2A. A summary of

the SEER incidence data used in the modeling is provided by Table 1. Note that the data were

collected over several years and therefore aggregating them together may mask trends in

improved survival or incidence over time. The data are also right-censored because many

patients are still alive at the end of the data collection period. Additionally estimated survival

times are slightly artificially inflated at age 65 due to a discrete stratification of conditional life

expectancies (Materials and Methods).

Esophageal cancer

Esophageal cancer is the sixth most common cause of cancer-related death worldwide, with a

5-year survival rate of less than 20% [58]. Although screening is practiced in a few geographic

areas with high-risk populations such as parts of China, endoscopic screening remains expen-

sive and not readily available in many high-risk regions [59]. We perform our analysis for only

a subset of population groups for this cancer type as sample sizes in the SEER database are too

low for reliable estimates in several cases such as young Asian and Pacific Islanders and His-

panics. We find that, assuming a screen of 75% effectiveness, patients in their 30’s and 40’s are

predicted to live up to an additional 20–25 years on average (Fig W in S1 Appendix). For these

results age is the most decisive indicator of potential benefit, dwarfing differences by sex and

ancestry.

Kidney cancer

Renal cancers constitute about 2% of all cancer diagnoses and deaths worldwide with inci-

dence rates generally higher in developed countries and rising; there are about 14,000 deaths

per year in the US from kidney cancers [60]. Urinary dipsticks are inadequate for screening

due to low sensitivity and specificity and CT abdominal imaging or ultrasound are not recom-

mended for population screening due to cost, false positives, incidental findings and low inci-

dence [61]. We find that early screening in 25-34-year-old patients can result in very large

survival benefits on average–up to 30 years (Fig 4A). Survival amongst 60–64-year-olds is typi-

cally only around 10 years. A notable sex difference is that 60-64-year-old African American

females are predicted to survive on average 6 years with screening, whereas their male counter-

parts are only expected to live for 3 years.

Liver cancer

Liver cancer is the fourth leading cause of cancer-related death globally and its incidence is

growing with estimates of over a million cases per year by 2025 [62]; however, a mass screening

trial for liver cancer in China using serum alpha-fetoprotein and ultrasonography did not

yield a reduction in liver cancer-specific mortality [63]. Incidence for this cancer type in the

SEER database is higher amongst males (Fig W in S1 Appendix). We find that 60-64-year-old

men are estimated to benefit on average less than females (about 9 years vs 12 years) across all

ancestries with this sex difference especially pronounced in Hispanics and African Americans.

Younger patients are predicted to enjoy substantially longer survival: for instance, 35-44-year-

old males can expect to gain approximately 25 additional life years as a result of screening.
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Fig 4. Overall predicted survival benefits of putative screening programs for a variety of cancer types for which there are currently no widespread screening

technologies and a cross cancer comparison. (A) Overall predicted survival benefit from a potential kidney cancer screen of 75% effectiveness stratified by age,

sex and ancestry. There is an artificial bump at age 65 due to the discrete stratification of conditional lifetime distributions (Materials and Methods). (B) Analogous

plot for a potential ovarian cancer screen under the same assumptions. The sample size used to estimate the parameters is given by the point size. Higher sample

sizes yield more reliable estimates, so where the sample size is less than 100 subjects, we do not make an estimate. Since this disease only affects females, males are

not included. (C) Comparison of the change in overall survival as a result of screening for different cancer types for African American men aged 50–54. Survival

without screening is shown on the left-hand side and the predicted survival with screening is on the right. We display two scenarios: one in which screening has an

effectiveness of 25% and another with effectiveness of 75%. (D) The analogous slope chart for Asian or Pacific Islander men of the same age. (E) Violin plot

showing the survival time distribution of cancer patients by type under three different scenarios. The first (in red) is based on the SEER data and is the observed

survival distribution. Then we present two modeled screening scenarios: one in which effectiveness post detection is 50% (yellow) and another where it is 100%

(blue).

https://doi.org/10.1371/journal.pcbi.1010179.g004
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Mesothelioma

Mesothelioma is almost always caused by asbestos exposure and currently accounts for about

3,000 deaths per year in the United States, with cases expected to rise in the developing world

[64]. Because high-risk cohorts are well known, it is hypothesized that targeted screening

could significantly improve survival; however, chest x-rays are insensitive and a combination

of CT scans and biomarkers are the subject of continued investigation [65]. Mesothelioma is a

rare cancer in SEER owing to its low incidence and as such too little data is available for most

population subgroups to perform our analyses apart from Caucasian patients (Fig W in S1

Appendix). Incidence in men is significantly higher than in women, but per patient, women

on average can expect to live longer as a result of screening under our modeling assumptions.

For instance, 60-64-year-old males are predicted to survive for 7.5 years on average post

screening, whereas for females this figure is 11 years. The differential incidence suggests tar-

geted screening may be more appropriate (in a similar manner to that displayed in Fig 2B).

This targeting may be done based on professions with high asbestos exposure where such data

is available. SEER does not contain such information, but the queuing methodology could be

applied on datasets containing such variables.

Ovarian cancer

There are about 200,000 cases of ovarian cancer globally each year, but this incidence is on the

decline; meanwhile 5-year overall survival in the US stands at 45.6% [66]. Transvaginal ultra-

sound and bimanual pelvic examination have been used in various screening studies, but no

mortality benefit has been established for this type of screening [67]. This type of cancer only

affects women, so there is no sex stratification (Fig 4B). Our results suggest that identifying

this cancer type through a novel and more effective screen in 25-29-year-olds would on aver-

age result in overall survival gains of over 30 years under the assumption of 75% effectiveness.

In comparison each 65-69-year-old patient would stand to gain about 10 extra years. By age 80

and above the benefit is estimated to be 2 years on average.

Comparing across cancer types

A comparison of screening programs for the different cancer types is displayed in Fig 4. We

show the predicted change in overall survival by cancer type under two example scenarios of

screen effectiveness (25% and 75%) for African American and Asian and Pacific Islander men

aged 50–54 (Fig 4C and 4D, respectively). Our results suggests that screening for pancreatic

cancer would provide the largest survival benefit and kidney cancer the least, which reflects the

fact that current survival from the latter is longer than the former, so the potential gains are

smaller. The analogous slope chart for other population subgroups is shown in Fig X in S1

Appendix. In all cases pancreatic cancer is a promising target for screening since current sur-

vival is poor. Mesothelioma, liver, and esophageal cancer also have low overall survival and

therefore may see big gains from successful screening. Ovarian cancer and kidney cancer

already have somewhat longer survival (typically between 5–10 years on average), whereas for

the other cancer types overall survival without screening for this age group is on average less

than 2.5 years. We investigate the survival distributions of cancer patients by cancer type

under three scenarios: no screening, screening with 50% effectiveness and with 100% effective-

ness (Fig 4E). The fact that ovarian cancer is sometimes diagnosed in very young people (age

20–30) means that under 100% effectiveness some patients could be expected to gain between

40 and 60 life years. Due to mesothelioma incidence being disproportionately concentrated in

middle aged and older people, most people screened for this cancer type are estimated to live

an additional 10–20 years.
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Discussion

Here we describe how a queuing-theoretic framework can be used as a versatile computational

method to generate simple stochastic models to quantify the benefits of screening for cancer

and to design optimal allocation and screening strategies. We illustrate the versatility of this

modeling approach by discussing example queuing network models that cover a range of med-

ical applications. We demonstrate how the queuing approach permits generalizations that go

significantly beyond deterministic compartmental models and Markov chain models, while

also providing more detailed answers. The exact results we obtain circumvent the need for

simulations entirely and offer a transparent relationship between inputs and outputs of the

model. Basic performance analysis of the queuing network models also yields natural and

explicit analytical quantifications of the benefits of screening. This finding suggests simple

rules for developing optimal screening strategies when resources are scarce and for extending

our methodology to factor in cost (as in Fig 2B), which is particularly important in the setting

of differential incidence and targeted screening. We apply this modeling framework to datasets

from the SEER cancer incidence database with a particular focus on pancreatic cancer.

Although our data applications are based on non-randomized registry data, our approach

has utility both in the setting of randomized clinical trial data and non-randomized data. Ran-

domized data is more appropriate when comparing or assessing the effectiveness of different

treatments, because non-randomized data has an inherent selection effect since treatments are

given based on the patient’s characteristics and not randomly assigned, so any ‘measured bene-

fits’ can be at least partially ascribed to genuine differences between patients. Even in the ran-

domized setting our modeling approach is useful for extrapolating to demand on the

population level, including a breakdown by subgroup. Additionally, randomized data com-

bined with our approach can provide a detailed mechanistic understanding linking inputs

with outputs, whereas traditional statistical analyses (such as Kaplan-Meier plots) cannot pro-

vide such insights. In contrast, registry data, such as that in SEER, can be helpful precisely

when no trial data is available to investigate the utility of a new screening technology. Our

approach is useful for ascertaining how effective a screening strategy would have to be to make

a substantial difference to outcomes like overall survival, well before a trial can be conceived.

As an example, consider using circulating tumor DNA readouts from blood tests as an early

diagnostic tool in cancer. Registry data can help model how effective such an intervention

might be, and therefore indicate whether a trial might be worth pursuing for which cancer

type.

Our approach has several modeling assumptions (Materials and Methods), which if

changed may change the results or permute the ordering of population subgroups we obtain.

Furthermore, uptake in screening programs, the chance of detection and the resultant survival

benefit may depend on age, sex, and ancestry, which we do not explicitly consider here, but

our methodology can easily be extended to incorporate such scenarios. The focus of most of

our results is on the benefit per patient, rather than per screen. The latter depends intimately

on differential incidence of cancers including at the population subgroup level, leading to the

fact that the per screen benefit ranking may be different from the per patient ranking. This

effect is investigated in Fig 2B. Because incidence and treatment standards for cancers vary

substantially across countries, an application of results based on US data needs to be refined

before being applied to other countries.

Our focus here is on mutually independent waiting times which are naturally modeled by

infinite server queues. Alternatively, we can consider finite server queues and the dependent

waiting times that they model–see section 2.5 in S1 Appendix. A broad class of such queuing

models fit into the framework we describe here and into networks with a mixture of finite and
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infinite server nodes. Going beyond the BCMP framework means that we lose our analytical

results. In this case simulation is the only general-purpose method. For instance, networks

with non-Poissonian exogenous arrivals cannot be handled by these methods (just as they can-

not by Markov chains). A full discussion of which models are in the scope of the theorem can

be found in [37].

Our aim is to illustrate an alternative and potentially useful toolbox through simple exam-

ples. With more extensive data one could make much more complicated models that consider

all sorts of disease-specific features such as different dynamics for various subtypes and treat-

ments, clinical stages etc. For example, it is easy to incorporate the potential costs of screening

such as overdiagnosis and overtreatment into this model, which might simply involve

reweighting estimated sojourn times by QALY scores, but it is hard to estimate these effects

without a randomized controlled trial. These QALY adjustments may be particularly impor-

tant when comparing screening strategies and outcomes across cancer types. We omit infor-

mation of cancer stage in our analysis because SEER does not have consistently defined

staging throughout the dataset used.

In sum, we propose that a queuing network-based methodology for evaluating screening

approaches can be widely applied in future studies to identify best strategies for clinical

implementation.

Supporting information

S1 Appendix. Supporting information containing supplementary methods, tables, and fig-

ures. Fig A. Schematic model of screenable cancer whose early detection confers an overall

survival benefit through early treatment. New instances of undiagnosed cancer appear at

rate η1. The number of such undiagnosed individuals is denoted N1. These individuals either

die, at rate μ1r10, are successfully screened and begin early treatment, at rate μ1r12, or progress

to late-stage symptomatic disease, at rate μ1r13. The number of individuals receiving early

treatment is denoted N2 and those receiving late-stage treatment by N3. The rate of death from

the former population is μ2 and from the latter is μ3. Table A. Testing distributional predic-

tions of the model against empirical distributions. Kolmogorov-Smirnov tests comparing

empirical and theoretical distributions predicted by the model. We compare the predicted dis-

tributions of N�
1

and N�
2

to the empirical distributions from the SEER data and test whether

exogenous arrivals are Markovian. Bonferroni adjusted p-values are displayed. Fig B. Treat-

ment-associated morbidity. We adjust the survival times by a multiplicative QALY factor rep-

resenting the decrease in quality of life due to treatment. The more severe the side effects of

the treatment, the lower the QALY factor. Fig C. Treatment-associated mortality. With prob-

ability p (given in percentage terms on the x-axis) patients die after one month due to treat-

ment-induced mortality. With probability 1−p they get the original, unadjusted survival time

distribution. As the risk of mortality increases, the average benefit of early treatment decreases

(holding treatment effectiveness constant). Fig D. Specificity and false positives factored in.

Example circulating tumor DNA pancreatic cancer screening program for Caucasian males

aged 55–59. The screen has imperfect specificity so false positives are possible, but confirma-

tory scans after positive screen results reduce the false positive rate. The x-axis shows different

values for the false positive probability and the y-axis the treatment effectiveness. The color

shows the net survival benefit from the program, i.e., the survival gains from catching pancre-

atic cancer early minus the overtreatment of false positives. Fig E. Difference in overall sur-

vival between an effective screening program and no screening for esophageal cancer. The

left end of the dumbbell shows expected survival of unscreened cancer sufferers, the right end

shows estimated average survival under a screening program with 100% efficacy. Fig F.
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Difference in overall survival between an effective screening program and no screening for

kidney cancer. The left end of the dumbbell shows expected survival of unscreened cancer suf-

ferers, the right end shows estimated average survival under a screening program with 100%

efficacy. Fig G. Difference in overall survival between an effective screening program and

no screening for liver cancer. The left end of the dumbbell shows expected survival of

unscreened cancer sufferers, the right end shows estimated average survival under a screening

program with 100% efficacy. Fig H. Difference in overall survival between an effective

screening program and no screening for mesothelioma. The left end of the dumbbell shows

expected survival of unscreened cancer sufferers, the right end shows estimated average sur-

vival under a screening program with 100% efficacy. There is not enough data to make reliable

estimates from many population subgroups. Fig I. Difference in overall survival between an

effective screening program and no screening for ovarian cancer. The left end of the dumb-

bell shows expected survival of unscreened cancer sufferers, the right end shows estimated

average survival under a screening program with 100% efficacy. Fig J. Difference in overall

survival between an effective screening program and no screening for pancreatic cancer.

The left end of the dumbbell shows expected survival of unscreened cancer sufferers, the right

end shows estimated average survival under a screening program with 100% efficacy. Fig K.

Testing the distributional predictions of the BCMP theorem for number of newly diag-

nosed Asian or Pacific Islander pancreatic cancer sufferers. We compare the predicted dis-

tribution of N�
1
, the number of pancreatic cancer sufferers at a given time diagnosed and

awaiting surgery, and the empirical distribution of this quantity estimated from the incidence

data. The theorem predicts that N�
1

should have a Poisson distribution whose mean is found by

solving the traffic equations. This process only involves averages of the data, and not details of

the data itself. The empirical distribution is also a discrete distribution, but we smooth out the

probability mass function of each as it is easier to visualize this way. Fig L. Testing the distri-

butional predictions of the BCMP theorem for number of newly diagnosed African Ameri-

can pancreatic cancer sufferers. We compare the predicted distribution of N�
1
, the number of

pancreatic cancer sufferers at a given time diagnosed and awaiting surgery, and the empirical

distribution of this quantity estimated from the incidence data. The theorem predicts that N�
1

should have a Poisson distribution whose mean is found by solving the traffic equations. This

process only involves averages of the data, and not details of the data itself. The empirical dis-

tribution is also a discrete distribution, but we smooth out the probability mass function of

each as it is easier to visualize this way. Fig M. Testing the distributional predictions of the

BCMP theorem for number of newly diagnosed Hispanic pancreatic cancer sufferers. We

compare the predicted distribution of N�
1
, the number of pancreatic cancer sufferers at a given

time diagnosed and awaiting surgery, and the empirical distribution of this quantity estimated

from the incidence data. The theorem predicts that N�
1

should have a Poisson distribution

whose mean is found by solving the traffic equations. This process only involves averages of

the data, and not details of the data itself. The empirical distribution is also a discrete distribu-

tion, but we smooth out the probability mass function of each as it is easier to visualize this

way. Fig N. Testing the distributional predictions of the BCMP theorem for number of

newly diagnosed Caucasian pancreatic cancer sufferers. We compare the predicted distribu-

tion of N�
1
, the number of pancreatic cancer sufferers at a given time diagnosed and awaiting

surgery, and the empirical distribution of this quantity estimated from the incidence data. The

theorem predicts that N�
1

should have a Poisson distribution whose mean is found by solving

the traffic equations. This process only involves averages of the data, and not details of the data

itself. The empirical distribution is also a discrete distribution, but we smooth out the probabil-

ity mass function of each as it is easier to visualize this way. Fig O. Testing the distributional
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predictions of the BCMP theorem for Asian and Pacific Islander pancreatic cancer suffer-

ers receiving surgery. We compare the predicted distribution of N�
2
, the number of pancreatic

cancer sufferers receiving surgery in a given year, and the empirical distribution of this quan-

tity estimated from the incidence data. The theorem predicts that N�
2

should have a Poisson

distribution whose mean is found by solving the traffic equations. This process only involves

averages of the data, and not details of the data itself. The empirical distribution is also a dis-

crete distribution, but we smooth out the probability mass function of each as it is easier to

visualize this way. Fig P. Testing the distributional predictions of the BCMP theorem for

African American pancreatic cancer sufferers receiving surgery. We compare the predicted

distribution of N�
2
, the number of pancreatic cancer sufferers receiving surgery in a given year,

and the empirical distribution of this quantity estimated from the incidence data. The theorem

predicts that N�
2

should have a Poisson distribution whose mean is found by solving the traffic

equations. This process only involves averages of the data, and not details of the data itself. The

empirical distribution is also a discrete distribution, but we smooth out the probability mass

function of each as it is easier to visualize this way. Fig Q. Testing the distributional predic-

tions of the BCMP theorem for Hispanic pancreatic cancer sufferers receiving surgery. We

compare the predicted distribution of N�
2
, the number of pancreatic cancer sufferers receiving

surgery in a given year, and the empirical distribution of this quantity estimated from the inci-

dence data. The theorem predicts that N�
2

should have a Poisson distribution whose mean is

found by solving the traffic equations. This process only involves averages of the data, and not

details of the data itself. The empirical distribution is also a discrete distribution, but we

smooth out the probability mass function of each as it is easier to visualize this way. Fig R.

Testing the distributional predictions of the BCMP theorem for Caucasian pancreatic can-

cer sufferers receiving surgery. We compare the predicted distribution of N�
2
, the number of

pancreatic cancer sufferers receiving surgery in a given year, and the empirical distribution of

this quantity estimated from the incidence data. The theorem predicts that N�
2

should have a

Poisson distribution whose mean is found by solving the traffic equations. This process only

involves averages of the data, and not details of the data itself. The empirical distribution is

also a discrete distribution, but we smooth out the probability mass function of each as it is eas-

ier to visualize this way. Fig S. Do pancreatic cancer diagnoses of Asian and Pacific Islanders

follow the Markovian assumption for exogenous arrivals required by the BCMP theorem?

We test the model assumption that exogenous arrivals constitute homogeneous Poisson point

processes. We fix a time interval of length one year and then ask if the number of arrival incre-

ments during that period follow a Poisson distribution with a mean given by the estimated

arrival rate multiplied by the time period, one year. This is necessary (but not sufficient) to be

a Poisson point process, so if this is violated then certainly the assumption of Markovian arriv-

als is too. The Poisson distribution and the empirical distribution of the number of patients

diagnosed each year are discrete distributions, but we smooth out their probability mass func-

tions for ease of viewing and comparing. The assumed distribution comes solely from averages

of the diagnosis data and does not use anything else about the data itself. The empirical distri-

bution is a result of looking at incidence each year broken down by population subgroup. Fig

T. Do pancreatic cancer diagnoses of African Americans follow the Markovian assumption

for exogenous arrivals required by the BCMP theorem? We test the model assumption that

exogenous arrivals constitute homogeneous Poisson point processes. We fix a time interval of

length one year and then ask if the number of arrival increments during that period follow a

Poisson distribution with a mean given by the estimated arrival rate multiplied by the time

period, one year. This is necessary (but not sufficient) to be a Poisson point process, so if this is

violated then certainly the assumption of Markovian arrivals is too. The Poisson distribution
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and the empirical distribution of the number of patients diagnosed each year are discrete dis-

tributions, but we smooth out their probability mass functions for ease of viewing and compar-

ing. The assumed distribution comes solely from averages of the diagnosis data and does not

use anything else about the data itself. The empirical distribution is a result of looking at inci-

dence each year broken down by population subgroup. Fig U. Do pancreatic cancer diagno-

ses of Hispanics follow the Markovian assumption for exogenous arrivals required by the

BCMP theorem? We test the model assumption that exogenous arrivals constitute homoge-

neous Poisson point processes. We fix a time interval of length one year and then ask if the

number of arrival increments during that period follow a Poisson distribution with a mean

given by the estimated arrival rate multiplied by the time period, one year. This is necessary

(but not sufficient) to be a Poisson point process, so if this is violated then certainly the

assumption of Markovian arrivals is too. The Poisson distribution and the empirical distribu-

tion of the number of patients diagnosed each year are discrete distributions, but we smooth

out their probability mass functions for ease of viewing and comparing. The assumed distribu-

tion comes solely from averages of the diagnosis data and does not use anything else about the

data itself. The empirical distribution is a result of looking at incidence each year broken down

by population subgroup. Fig V. Do pancreatic cancer diagnoses of Caucasians follow the

Markovian assumption for exogenous arrivals required by the BCMP theorem? We test the

model assumption that exogenous arrivals constitute homogeneous Poisson point processes.

We fix a time interval of length one year and then ask if the number of arrival increments dur-

ing that period follow a Poisson distribution with a mean given by the estimated arrival rate

multiplied by the time period, one year. This is necessary (but not sufficient) to be a Poisson

point process, so if this is violated then certainly the assumption of Markovian arrivals is too.

The Poisson distribution and the empirical distribution of the number of patients diagnosed

each year are discrete distributions, but we smooth out their probability mass functions for

ease of viewing and comparing. The assumed distribution comes solely from averages of the

diagnosis data and does not use anything else about the data itself. The empirical distribution

is a result of looking at incidence each year broken down by population subgroup. Fig W. Per

patient expected lifetime gain of putative screening programs for a variety of cancer types

for which there is currently no widespread screening. (A) Overall predicted survival benefit

from a potential esophageal cancer screen of 75% effectiveness stratified by age, sex and ances-

try. There is an artificial bump at age 65 due to the discrete stratification of conditional lifetime

distributions. (B) Analogous plot for a potential liver cancer screen under the same assump-

tions. The sample size used to estimate the parameters is given by the point size and no esti-

mate is made where the sample size is too small to be reliable. (C) Analogous plot for

mesothelioma screening under the same assumptions. Fig X. Comparison of the change in

overall survival as a result of screening for different cancer types for various population

subgroups aged 50–54. Survival without screening is shown on the left-hand side and the pre-

dicted survival with screening is on the right. We display two scenarios: one in which screening

has an effectiveness of 25% and another with effectiveness of 75%.
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