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SUMMARY

Glioblastoma (GBM) is the most aggressive brain tumor, with a median survival of�15 months. Targeted ap-
proaches have not been successful in this tumor type due to the large extent of intratumor heterogeneity.
Mosaic amplification of oncogenes suggests that multiple genetically distinct clones are present in each tu-
mor. To uncover the relationships between genetically diverse subpopulations of GBM cells and their native
tumor microenvironment, we employ highly multiplexed spatial protein profiling coupled with single-cell
spatial mapping of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA. Single-cell
FISH analysis of a total of 35,843 single nuclei reveals that tumors in which amplifications of EGFR and
CDK4 more frequently co-occur in the same cell exhibit higher infiltration of CD163+ immunosuppressive
macrophages. Our results suggest that high-throughput assessment of genomic alterations at the single-
cell level could provide a measure for predicting the immune state of GBM.

INTRODUCTION

Glioblastoma (GBM) is the most heterogeneous and aggressive

brain malignancy, with an average survival of 15–18 months

post-diagnosis.1 Even through GBM’s frequency of 3 cases

per 100,000 people in the US is moderate, this disease causes

high morbidity and mortality, as only 6.8% patients survive

beyond 5 years post-diagnosis.1 Despite a growing understand-

ing of the disease biology, therapies targetingmolecular features

in GBM have been failing in clinical trials.2

Genetically, GBM is characterized by a complex mutational

landscape with a large degree of inter- and intratumor heteroge-

neity.3–5 Gains in chromosome 7 and loss of chromosome 10 are

common events predicted to arise early in tumor evolution.6

Frequent amplifications of several receptor tyrosine kinases

(RTKs), including EGFR, PDGFRA, andMET, have been explored

as potential therapeutic targets in GBM.1 However, despite

successful trials in other malignancies, RTK inhibitors have not

provided significant benefit to patients with GBM.1,7,8 In addition

to the adaptability of cellular signaling in response to RTK inhibi-

tion, and the challenges associated with drug penetration

through the blood-brain barrier, genetic intratumor heterogene-

ity further contributes to GBM resistance.9 In particular, RTK-en-

coding gene amplifications, particularly in PDGFRA, EGFR, and

MET, frequently co-occur in the same GBM sample, yet not in

the same cells.10,11 Thus, genetic mosaicism of GBM is one of

the key obstacles for effective treatment of these tumors.

Inter- and intratumor heterogeneity of gene amplifications is

also linked to the diversity of phenotypes identified inGBM. Initial

transcriptional profiling of bulk tumor tissue revealed that GBMs
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can be classified into three subtypes: classical-like, proneural,

and mesenchymal.12,13 Each of these transcriptional subtypes

is associated with increased frequency of specific genetic alter-

ations: EGFR amplification and loss of CDKN2A/B are typical for

classical-like GBM, CDK4 and PDGFRA amplifications are com-

mon for proneural GBM, and NF1 loss is associated with a

mesenchymal transcriptional program.13 Despite this discovery,

the restriction to the proneural tumor type in clinical trials for

PDGFRA inhibition did not increase the treatment success

rate.1 Advances in single-cell transcriptomics revealed that

each GBM tumor, regardless of subtype reported by bulk

profiling, is in fact a mixture of cells belonging to different sub-

types.14–17 One of the most recent classifications of cells based

on single-cell expression profiling identified four major cellular

states, recapitulating distinct neural cell types.15 This classifica-

tion also points to gene amplifications as potent drivers of intra-

tumor heterogeneity, as each of the cellular states is associated

with a distinct genetic alteration: oligodendrocytic precursor

cell-like (OPC-like) withPDGFRA amplification; neural progenitor

cell-like (NPC-like) with CDK4 amplification; astrocytic cell-like

(AC-like) with EGFR amplification; and mesenchymal-like

(MES-like) with NF1 loss.15 While transitions between these

cell types can occur, each genetic driver favors a particular tran-

scriptional state of the cell.15 Thus, assessment of copy-number

alterations (CNAs) in EGFR, CDK4, and PDGFRA at the single-

cell level in situ may provide information about cellular diversity

within distinct tumor microenvironments.

In situ heterogeneity of GBM, observed as extensive variability

of histological features, is characteristic for this tumor type and

forms the root of the historical name ‘‘glioblastoma

multiforme.’’ The disordered tissue structure as well as non-uni-

form contrast enhancement in magnetic resonance imaging

(MRI) point to a high degree of macroscopic diversity within

these tumors.18 Characteristic pathological features of GBM

include areas of pseudopalisading, organized alignment of

viable cells surrounding the necrotic regions, and microvascular

proliferation.19 These different tumor microenvironmental types

are often intermixed in the tumor tissue. Interestingly, both the

perinecrotic areas and perivascular regions were shown to

support GBM stem-like cells, rare subpopulations with

increased epigenetic plasticity and potentially higher resistance

to standard treatment.20–24 Thus, to survive, GBM cells may

need to adapt to drastically different microenvironments. Yet,

this adaptation is not necessarily cell autonomous; instead, the

maintenance of intratumor heterogeneity in GBMmay be depen-

dent on interactions between genetically diverse GBM cell sub-

populations andmay be driven by differences in and interactions

with specific microenvironmental components.

Since the four major subtypes of GBM cells, while remaining

plastic, are largely determined by underlying genetic aberra-

tions,15 we aimed to study how genetically constricted popula-

tions interact with each other in the context of the tumor micro-

environment of intact clinical tissue specimens.

RESULTS

To investigate the relationship between the spatial localization of

cells with different genotypes and their microenvironmental pref-

erences, we constructed a tissue microarray (TMA) from 17

formalin-fixed paraffin-embedded (FFPE) IDH wild-type GBM

cases (Table S1; all tumor samples were collected prior to

treatment). From each tumor block, 3–4 cores were randomly

selected (61 in total) to investigate the patterns of local intratu-

mor heterogeneity within each tumor biopsy (Figure 1A). Since

these samples were of variable age and embedded in paraffin

blocks, they could not be used for transcriptomic studies; how-

ever, formalin-fixed paraffin embedding and prolonged storage

in ambient temperature does not impede immunohistochemistry

or DNA-based studies. Thus, we used our multiregion TMA of

intact tissue samples from each tumor for single-cell assessment

of selected genomic features by fluorescence in situ hybridiza-

tion (FISH) and specific-to-allele PCR-FISH (STAR-FISH) as

well as protein expression using NanoString’s GeoMx digital

spatial profiling (DSP) platform (Figure 1).

GeoMx DSP data reveal local heterogeneity in tumor
microenvironmental marker expression
To characterize the extent of variation in the local GBM tumor

microenvironment within distinct regions of the same tumor bi-

opsy, we employed a spatial profiling platform based on highly

multiplexed immunostaining with oligonucleotide-tagged anti-

bodies (Figure 2A). GeoMx DSP allows quantification of oligo

tags released by UV-illuminated regions of interest (ROIs), which

can be selected based on immunofluorescent staining for a few

markers. DSP enables simultaneous antibody staining for tens of

markers and control antibodies, providingmore robust quantifica-

tion compared with fluorescence-based methods. In our assay,

multicolor immunofluorescent staining with markers of glial cells

(GFAP), immune cells (CD45), and vasculature (a-SMA) was

used to select ROIs within each TMA core (Figure S1A). Despite

the small size of each core (1 mm in diameter), many of the cores

display varied morphology and expression levels for GFAP,

CD45, and a-SMA within the core (Figure 2B). We selected 96

ROIs out of the 61 cores present on the TMA (see STARMethods),

withmultiple (2–3) ROIs in cores with heterogeneous immunofluo-

rescent staining (Figure S1A). These ROIs were then subjected to

GeoMx DSP for 79 protein markers associatedwith GBMbiology,

neurobiology, and immunology (Figure2C;TableS2).We thenper-

formed a multilevel analysis of correlation in expression patterns

across tumors and a quantification of intra- vs. intertumor expres-

sion heterogeneity based on ROI- and core-specific expression

patterns.

To identify trends in co-expression, we assessed overall

correlations between protein expression across tumors via

hierarchical clustering (Figure 2C, clusters of proteins with

similar function are indicated on the figure). We found that the

expression levels of the immune markers CD68, HLA-DR,

CD11b, CD45, IBA1, CD163, and CD14 were correlated across

all tumors (mean Spearman correlation = 0.76, range: 0.57–

0.92; Figure 2C, the second cluster from bottom right). A similar

trend was observed for the neuron and glial cell-expressed TAU

protein and its phosphorylated versions, except for phosphor-

TAU S404 (Spearman correlation > 0.69; Figure 2C, the third

cluster from top left). Negative correlation was observed

between clusters of immune (including CD68, HLA-DR, and

CD11b) and neuronal markers (Park5, SNCA-filament, SYP,
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and MBP, among others), with a Spearman coefficient of �0.48,

even though this comparison did not reach statistical signifi-

cance (p = 0.052; see STAR Methods). Strong correlations

were also observed between the expression of Lef1 and

Rspo2, two proteins of the Wnt signaling pathway, and Satb2,

a protein of the TCF/LEF pathway (Spearman correlation coeffi-

cients ranging from 0.74 to 0.93). These proteins have been

implicated in stemness and promotion of a cancer stem cell

phenotype.25–27 Thus, our DSP delivers expected protein co-ex-

pression patterns.

The expression levels of the 79 markers were highly variable

among cores derived from the same tumor (Figure S1B). Since

the TMA cores represent spatially distant regions of the same tu-

mor fragment with possibly different compositions, we assessed

the variability of protein expression between ROIs from distinct

tumors relative to the variability within tumors using the

Kruskal-Wallis H test. Overall, we found that the variability of

our 79 protein marker expression panel between tumors ex-

ceeded the variability within tumors (Figure 2D). Particularly

high inter- relative to intratumor variability was observed for

several immune-related proteins (CD45, HLA-DR, IBA1,

P2RX7, YKL-40), as well as for EGFR and p53, which are both

frequently overexpressed and mutated in human GBM4,28 and

can drive tumorigenesis in animal models of glioma.29,30 This

finding may indicate that both immune state and major tumor

drivers are less variable between biopsies of the same tumor.

The neuronal markers NEFL, MBP, and Park5 also exhibited

higher relative intertumor variance. On the other hand, vascular

cell adhesion molecule (VCAM) and CD31, both associated

with endothelial cell function and tumor vascularization,31 ex-

hibited comparatively high expression variance between regions

within the same tumor sample and among samples, suggesting

that, within GBMbiopsies, there is high variability in blood vessel

distribution and that even a single biopsy is likely to contain

differentially vascularized niches (Figures S2A and S2B).

This result prompted us to assess the histopathological fea-

tures of each TMA core to identify which protein markers may

be specific for different tissue compositions (Figure S2). Tissue

composition assessment based on H&E staining confirmed the

expected variation in hemorrhage and necrosis areas within

Figure 1. Summary of study design and acquired data

(A) Schematic of tumor microarray (TMA) construction.

(B) TMA slide 1 was first used for GeoMx digital spatial profiling and next for multicolor FISH. Quantification of individual FISH signals was performed to classify

cells into distinct genotypes based on EGFR and CDK4 amplification. Table contains overall cell count for each genotype. ORlow, tumors with low odds ratio for

CDK4/EGFR co-amplification at single-cell level; ORhigh tumors, high co-amplification odds ratio.

(C) TMA slide 2 was used for STAR-FISH for TERT promoter hotspot mutation detection.

(D) TMA slide 3 was used for H&E-based histological evaluation.
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cores from the same tumor (Figure S2C). However, classification

of each core according to the most dominant histopathological

feature did not reveal visible protein expression correlation

patterns (Figure S2D), possibly due to cores containing mixed

features. Histopathological features, especially the immune infil-

tration, can be affected by anti-inflammatory treatment with ste-

roids, which are often given to patients with GBM before surgical

resection of the tumor to ease edema symptoms.1,32–34 In our

cohort, only 4 cases received steroids, and we did not observe

any specific patterns of protein expression or histopathological

features in these tumors (Figure S2D).

Characterization of single-cell genetic heterogeneity in
GBM multicore TMA
The analysis of the spatial localization of cells harboring genetic

drivers associated with distinct transcriptional states in GBM,

namely amplifications of EGFR, PDGFRA, and CDK4,15 could

be revealing of microenvironmental preferences and interactions

between these cellular subpopulations. To address this ques-

tion, we performed multiplexed FISH for EGFR, PDGFRA, and

CDK4 on our multiregion TMA (Figures 3A and S3A). Using an

automated single-cell FISH signal counting platform, we quanti-

fied the number of FISH signals in each individual nucleus

imaged (n = 35,843 nuclei, on average 2,335 nuclei per tumor,

216 nuclei per image, 166 images). We found that PDGFRA

amplification (R6 FISH signals) was relatively rare, detected in

less than 2% of all cells analyzed, and we therefore focused on

the amplification patterns of EGFR and CDK4, independently

of PDGFRA amplification status. Each cell was assigned to

one of the following genotypes: E (EGFR amplified and not

CDK4 amplified), C (CDK4 amplified and not EGFR amplified),

EC (EGFR and CDK4 amplified), and N/O (no amplification of

Figure 2. Spatial profiling reveals regional heterogeneity in protein expression between distinct areas of the same GBM biopsy

(A) Schematic of digital spatial profiling (DSP) for protein marker expression. From each FFPE block, 3–4 cores were punched to construct a multiregion TMA. In

DSP assay, staining with 79 protein marker-specific antibodies labeled with photocleavable oligo tags were used. UV light exposure of a region of interest (ROI)

releases the tags, which are then quantified for each ROI separately.

(B) Example of two cores with low (left) and high (right) heterogeneous staining, used to select ROI for DSP. Large circle: full core size (1 mm diameter), small

circles: selected ROIs. Scale bar, 20 mm.

(C) Spearman correlations between all profiled markers across tumors. Groups of markers with the strongest correlations are marked.

(D) Relative measure of inter- to intratumor variability in the expression of each protein, as indicated by the H Kruskal-Wallis statistic (see STAR Methods).
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either EGFR or CDK4). We observed significant variation in the

overall frequency of cells of each genotype within each TMA tu-

mor (Figures 3B–3D; Table S3). Although several tumors had

relatively high E cell frequency, C and EC cells were found in

most of the analyzed samples (Figure 3C). A calculation of the

Shannon index of diversity35 of genotype prevalence within

each image (Figure 3D) showed variation between distinct cores

taken from the same biopsy, further suggesting that the extent of

heterogeneity differs within relatively small tumor regions. We

did not identify any relationships between a tumor’s anatomical

location and its genetic diversity (Figure S4), a finding that may

be due to the small size of our cohort, enriched in frontal and

temporal lobe tumors.

About half of all cells quantified in our samples were identified

as N/O. This cell population could include cancer cells with

distinct genotypes, without high copy-number amplification of

the EGFR and CDK4 genes, but with other genetic alterations.

It could also include cells of the tumor microenvironment that

have a normal (non-amplified) genotype. Correlation of N/O

cell frequency with DSP-based protein expression did not reveal

a distinct identity of this population (Figure S3B). However, we

found a negative correlation between the frequency of N/O cells

and expression of Olig2 (Spearman correlation = �0.75,

adjusted p value = 0.044). Our protein expression profiling found

Olig2 expression to be strongly correlated with Sox2 expression

(Spearman coefficient = 0.81, adjusted p value = 0.007),

Figure 3. Single-cell characterization of EGFR, PDGFRA, andCDK4 amplifications and TERT promoter mutations in a multiregion GBM TMA

(A) Summary of the FISH quantification workflow. Each imaged area is segmented, based on the nuclear outlines, for counting of each FISH signal in individual

nuclei. Based on the presence of gene amplifications, each nucleus is classified as a distinct genotype. Scale bar, 50 mm.

(B) Overall frequency of cells with FISH-based derived genotypes.

(C) Proportion of cells with the E, C, and EC genotypes in individual images in each tumor. E, cells with amplified EGFR and no CDK4 amplification; C, cells with

amplified CDK4 and no EGFR amplification; EC, cells with amplification of both EGFR and CDK4. Each data point represents a genotype frequency in an in-

dividual image.

(D) Heterogeneity of cells (measured by the Shannon index) across the E, C, EC, and N/O (not amplified in either CDK4 or EGFR) genotypes within each tumor.

Each data point represents an image. Colors represent different cores of the same tumor.

(E) Correlations between proportions of cells with distinct genotypes, with each point representing the ratio of the cells with a particular genotype to the total

number of cells within a tumor. Spearman correlation coefficients and p values adjusted for multiple comparisons are shown along with best-fit curves. Scales

allowing for best visualization of data points (and not showing the full 0–1 proportion ranges) were used in each plot.

(F) Within-core frequency of cells harboring TERT promoter mutation.
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although within the N/O population, the negative correlation with

Sox2 expression did not reach statistical significance. BothOlig2

and Sox2 are often expressed at high levels by GBM tumor

cells,12,13 and thus a low abundance of these proteins in N/O

cells could indicate that a large proportion of these cells is of

non-tumor origin.

Since cells with distinct genotypes based on the three selected

amplifications were found in almost all tumors analyzed, we

investigated whether there were any relationships between the

proportions of these cell types in a tumor (Figures 3E and S3C).

The prevalence of N/O cells in a tumor was negatively correlated

with E cell frequency (Spearman correlation = �0.91, adjusted p

value=1.7310�6) andECcell frequency (Spearmancorrelation=

�0.79, adjusted p value = 3.9 3 10�4), both of which were

positively correlated with each other (Spearman correlation =

0.78, adjusted p value = 5.7 3 10�3). EC cell frequency was

also positively correlated, albeit more weakly, with C cell fre-

quency (Spearman coefficient = 0.66, adjusted p value = 5.7 3

10�3). No strong correlation was found between C and E cell

frequency, and a weak correlation was identified between C

and N/O cell frequency (Spearman coefficient = �0.52, adjusted

p value = 0.04; Figure S3C).

Next, we sought to establish whether the tumor genotypes

based on bulk tissue sequencing could be linked to diversity of

single-cell-based, copy-number-derived genotypes. Targeted

sequencing of 50 genes using the OncoPanel (see STAR

Methods) showed only a few mutations present in each tumor

in our cohort, and no clear distinction between tumors could

be made based on these genetic alterations assessed in bulk

(Figure S3D; Table S4).

hTERT promoter hotspot mutations have been reported as

one of the drivers of GBM,4,36 yet they were not included in the

targeted sequencing panel we used. To assess the frequency

and spatial localization of cells harboring the hotspot mutation

C228T in the hTERT promoter region, we performed in situ sin-

gle-cell mutation detection using the STAR-FISH assay37 on

our multiregion GBMTMA (Figure S5).We found that themajority

of the cores in the TMA contain over 50%TERTmutant cells, het-

ero- and/or homozygous (Figure 3F). There was significant vari-

ation between distinct cores taken from different regions of the

same tumor (Figure S5D). We did not observe any correlations

between the ratio of cells with hTERT promoter mutation and

the frequency of N/O cells, i.e., cells lacking EGFR, CDK4, and

PDGFRA amplifications, most likely due to the heterogeneous

nature of the N/O population (Figure S5E).

Together, these results show that single-cell-based FISH

quantification identifies a high prevalence of hTERT mutations

and of cells harboring CDK4, EGFR, and dual amplifications.

These genetic alterations co-exist in the majority of the GBM

samples tested and exhibit a large extent of heterogeneity.

Single-cell genotypes stratify tumors by co-occurrence
of EGFR and CDK4 in the same cell vs. distinct cell
populations
Since amplifications of EGFR, PDGFRA, and CDK4 were previ-

ously shown to correlate with the presence of transcriptionally

distinct cell states in GBM,15 cells harboring a combination of

these genetic events could gain dual properties or have new

distinct phenotypes. Our dataset of single-cell genotypes allows

for an investigation of differences between tumors in which these

alterations tend to co-occur in the same cell and tumors in which

they are more likely to be found in distinct cell populations. We

therefore calculated the odds ratio of detecting co-amplified

cells within a tumor for each of our 17 GBM cases. Since

PDGFRA amplification was rare in our dataset, we again focused

on EGFR and CDK4 amplifications. The odds ratio (OR), as

defined here, represents the likelihood that a cell harboring an

EGFR amplification also harbors a CDK4 amplification, relative

to the likelihood of a CDK4 amplification unaccompanied by an

EGFR amplification. At OR = 1, the presence of an amplification

of one of these genes has no effect on the probability of the other

gene being amplified. An OR above (below) unity therefore im-

plies an increased (decreased) tendency for EGFR and CDK4

amplifications to co-occur in the same cell over what would be

expected if the presence of one amplification had no effect on

the presence of the other. The OR calculation (see STAR

Methods) accounts for all relative frequencies of the cells with

distinct genotypes (C, E, CE, N/O) within a tumor. Using the

OR values, we separated the tumors into 3 classes based on

OR tertiles (n = 6, n = 5, and n = 6): ORlow, characterized by a

decreased tendency for EGFR and CDK4 same-cell co-amplifi-

cation (OR is significantly below unity); ORhigh, characterized

by an increased tendency for same-cell co-amplification (OR is

significantly above unity); and tumorswhere there is no strong ef-

fect either way (OR near unity) (Figures 4A and 4B; Table S5). The

frequencies of E cells (EGFR amplification alone) and N/O cells

(lacking EGFR and CDK4 amplifications) were significantly

different between ORhigh and ORlow groups, while C and EC cells

were similarly distributed across all tumors (Figure 4C). Thus, the

low OR may be driven by an increased frequency of cells

harboring only the EGFR amplification. While the median fre-

quency of cells with an hTERT promoter mutation was similar

across the OR groups, ORlow tumors had somewhat higher vari-

ability in hTERT mutation frequency, albeit not significantly,

which could arise if the mutation was subclonal in these tumors.

Interestingly, the average copy number of EGFR in E cells was

significantly higher in ORlow tumors (Figure 4D; mean 9.7 copies

in ORlow vs. 7.8 copies in ORhigh, Mann-Whitney test p value =

0.015) and also exhibited higher variability in ORlow tumors, as

indicated by the Shannon diversity index (Figure 4F). In contrast,

CDK4 copy-number diversity remained similar among tumors

with different OR statuses (Figures 4E and 4F). This suggests

that the nature of EGFR amplification in E cells in ORlow tumors

may be qualitatively different from that observed in E cells in

ORhigh tumors. A possible explanation is that EGFR amplification

could be generated by extrachromosomal DNA fragments in

ORlow tumors. To test this hypothesis, we performed whole-

genome sequencing of DNA extracted from FFPE slides from

three ORlow and three ORhigh tumors. Standard CNA analysis

confirmed high levels of EGFR amplification in all three ORlow tu-

mors, consistent with our FISH-based findings (Figure S6A). In

the ORhigh group, we confirmed CDK4 amplification in one

tumor, where a large clonal fraction of C and EC cells was

expected. However, the co-amplification of EGFR and CDK4 in

ORhigh tumors was not detected in bulk sequencing. This

discrepancy is not unexpected given the subclonal nature of
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the co-amplifications identified by our single-cell-based FISH

counting. Next, to test for the presence of structural signatures

suggestive of a potential extrachromosomal nature of EGFR am-

plifications, we reconstructed the fine structure within the focal

amplification of EGFR using the AmpliconArchitect.38 Indeed,

in the three ORlow tumors tested, we observed a complex struc-

ture of genomic rearrangements involving the EGFR amplicon,

which stands in contrast to the simpler amplification patterns

found in the three ORhigh tumors (Figure S6B). The complex

breakpoints identified in our whole-genome sequencing data

resemble findings of ApliconArchitect reconstruction of extra-

chromosomal DNA (ecDNA) confirmed by BioNano optical map-

ping.39 Thus, both our FISH andwhole-genome sequencing data

point to an extrachromosomal nature of EGFR amplification in

ORlow, but not in ORhigh, tumors.

Our in situ single-cell genotyping dataset contains spatial

coordinates for each nucleus recorded in an image. This dataset

thus enabled us to compute the distance between spatial loca-

tions of cells with distinct genotypes in ORlow and ORhigh tumors.

Compared with ORhigh tumors, E cells in ORlow tumors are closer

to each other (Mann-Whitney test p value = 0.02; Figure 4G), while

no significant difference in distances among C cells was found

between ORlow and ORhigh tumors (distances shown are relative

toN/O-N/Ocell distances in order to normalize for variability in tis-

sue density). Since the difference in abundance of E cells in ORlow

and ORhigh tumors is higher than that of C cells (Figure 4G), the

proximity of E cells may be directly related to frequency of these

cells. The ratio among between-cluster sum of squares and total

sum of squares, which informs about the clustering of individual

cell types, showed that in ORhigh tumors, C cells have a tendency

toward tighter clustering within the tissue (Mann-Whitney test p

value = 0.046; Figure 4H). This and the lower relative distance

between C-to-C cells compared with other cell types (Figure 4G)

suggest that cells harboring only the CDK4 amplification could

potentially be less migratory and stay closer to each other after

cell division, creating pockets of C cells.

Figure 4. Single-cell genotypic classification of tumors based on relative proportions of cells with EGFR and EGFR+CDK4 amplifications

(A) Odds ratios (ORs) for the presence ofCDK4 amplification in the same cell as EGFR amplification, relative to cells withCDK4 amplification alone. OR tertiles are

shown in different colors.

(B) Representative images of EGFR and CDK4 FISH in tumors with low (tumor 1) and high (tumor 17) ORs. Gray: DAPI, green: EGFR FISH, magenta: CDK4 FISH.

Scale bar, 50 mm.

(C) Frequencies of E, C, EC, and N/O cells as well as cells harboring TERT promoter mutations in low- and high-OR tumors.

(D) Per-tumor mean EGFR copy number in E cells across the OR groups.

(E) Per-tumor mean CDK4 copy number in C cells across the OR groups.

(F) Diversity (per-tumor Shannon index) of EGFR and CDK4 CNA in single- and dual-amplified cells across the OR groups.

(G) Within-image distances between cells of different genotypes relative to distances among N/O cells across OR groups.

(H) Clustering of cells with distinct genotypes. Between cluster sum of squares by total sum of squares (BCSS/TSS; see STAR Methods) higher ratio indicates

tighter clustering. The box-and-whisker plots in all bar graphs (C–H) show the mean (midline) and 25th–75th (box) and 5th–95th (whiskers) percentiles. Mann-

Whitney tests p values are shown. Colors of tumor groupings are indicated in (A). Genotypes: E, cells with amplified EGFR and non-amplified CDK4; C, cells

with amplified CDK4 and non-amplified EGFR; EC, cells with amplification of both EGFR and CDK4; N/O, cells not amplified in either EGFR or CDK4. Each point

represents a single tumor, with weighted averages (by cell number) for image-wise quantities (distances and clustering).
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In summary, our cytogenetic and spatial analysis showed

that the single-cell-level quantification of EGFR andCDK4 ampli-

fications can be used to stratify tumors into distinct classes

based on the relative frequency of cells with co-amplification

of the two oncogenes: ORlow tumors, characterized by higher

relative presence of EGFR-only amplified cells, and ORhigh tu-

mors, with more balanced frequency of cells with single and

both amplifications.

Single-cell EGFR-CDK4 amplification co-occurrence is
associated with an immunosuppressive tumor
microenvironment
Since the ORlow and ORhigh tumor groups exhibit distinct cellular

composition and distributions of EGFR and CDK4 gains, we

sought to identifywhether any proteins are differentially expressed

between these tumor groups. As expected, the levels of the EGFR

protein were significantly different between ORlow and ORhigh tu-

mors (Mann-Whitney test p value = 0.03; Figure 5A), reflecting

the differences in the relative numbers of cells harboring EGFR

gene amplification as well as the copy-number differences noted

above.More interestingly,we found thatORhigh tumorswerehighly

enriched in proteins associatedwith immunecell infiltration and an

immunosuppressive microenvironment (CD163, IBA1, CD14,

CD45, CD11b, HLA-DR; Figure 5A), all downregulated inORlow tu-

mors. Thesemarkers additionally showed a trend toward negative

correlations with EGFR protein expression (Figure 5B), although

these correlations were not statistically significant. Of note,

CDK4 was not included in the GeoMX DSP panel, and therefore

no protein expression for this gene was available for our analysis.

Among the immune-related proteins in our expression panel,

CD163, a marker of immunosuppressive macrophages, showed

the highest mean difference in expression between the ORhigh

and ORlow tumor groups, suggesting enrichment of immunosup-

pressive cells in ORhigh tumors (Figures 5A and 5B). Immunofluo-

rescent staining of the original sections from ORlow and ORhigh

tumors confirmed the striking difference in infiltration of

Figure 5. EGFR and CDK4 co-amplification OR-based tumor groups display distinct protein expression patterns associated with immune

infiltration and survival outcomes

(A) Differential protein expression between OR-based tumor groups. The expression value of a protein in a tumor is a weighted mean of expression levels in

individual ROIs in that tumor. Each bar represents expression values across all tumors in a group, themean (midline), and 25th–75th (box) and 5th–95th (whiskers)

percentiles are shown. Only proteins exhibiting an adjusted Mann-Whitney test p value <0.05 are shown. Underlined: immune markers.

(B) Tumor-wise correlations between the differentially expressed proteins in (A).

(C) Representative images of CD163 staining in the tumors with the highest and lowest ORs (left) and CD163+ cell quantification (right). FOV, field of view. Scale

bar: 50 mm.

(D) Survival analysis for patients stratified into top and bottom tertiles (n = 31 and n = 30, respectively; CPTAC40 dataset) based on CD163 protein level. Log rank

test p values and Cox proportional hazard ratio (HR) values (age and sex adjusted; see STAR Methods) are shown with a 95% confidence interval in brackets.

Shaded areas: confidence intervals.

(E) Survival analysis for patients stratified into top and bottom tertiles (n = 170 for each group, TCGA Firehose Legacy dataset) based on CD163mRNA expression

level. Log rank test p values and Cox proportional HR values (age and sex adjusted; see STAR Methods) are shown with a 95% confidence interval in brackets.

Shaded areas: confidence intervals.
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CD163+ cells (Figure 5C). These results suggest that tumors clas-

sified based on the OR of EGFR and CDK4 co-occurrence at the

single-cell level have different tumormicroenvironments and that

a higher relative frequency of co-amplification of these two genes

is associated with a more immunosuppressive state. The

presence of immunosuppressive macrophages and CD163

expression in tumors has been previously linked with the survival

of patients with GBM.41,42 In line with this observation, using

CPTAC40 and TCGA4 datasets on CD163 protein and transcript

level-based stratifications, respectively, we observed that pa-

tients with GBM with higher CD163 expression tend to have

somewhat shorter survival times; however, in these datasets,

the differences were not significant (Figures 5D and 5E).

To further investigate the extent of EGFR and CDK4 co-ampli-

fication in other datasets, we analyzed two large, published

human GBM single-cell transcriptomic datasets,15,16 filtered for

IDH wild-type (IDHWT) tumors only. We estimated single-cell-

level copy-number gains and losses in genomic regions spanning

genes around EGFR on chromosome 7 and CDK4 on chromo-

some 12 in malignant cells14 and classified cells accordingly as

E, C, or EC cells (Figures S7A and S7B). We found that 12 out

of 20 tumors in the Neftel et al.15 dataset were classified as

containing only EGFR-amplified cells, while 6 tumors contained

cells with inferred co-amplifications of both EGFR and CDK4

(Figure S7B, left panel). Thus, single-cell transcriptomic analysis

supports our FISH data-based findings of a high frequency of

EGFR amplification in patients with GBM. Since the Neftel

et al.15 tumor samples were depleted of immune cells via CD45

sorting, to analyze the immune landscape in GBM, we turned to

the Richards et al.16 dataset, which contain fewer tumors but

has high numbers of immune cells sequenced. Tumor composi-

tion in this dataset wasmore heterogeneous, with several tumors

predicted to contain both E and EC cells and three tumors

containing small fractions of C cells (Figure S7B, right panel).

Interestingly, the tumor G910, with the highest frequency of EC

cells, also had the highest frequency of M2-like macrophages

(Figures S7C–S7E; Tables S6 and S7). These results further sup-

port our finding of ORhigh tumors having a large extent of infiltra-

tion of immunosuppressive macrophages; however, single-cell

profiling of larger cohorts containing both tumor and immune

cells will be needed to validate this finding.

Analysis of human tumor tissues provides a static snapshot of

tumor heterogeneity. Thus, to investigate the possible mecha-

nism by which the OR of EGFR andCDK4 co-amplification might

influence the immunemicroenvironment, we developed a synge-

neic murine glioma model based on the GL261 murine cell line.

GL261 E, C, and EC populations were generated by overex-

pressing EGFR and EGFP, CDK4, and mCherry or both onco-

gene and fluorescent protein sets (Figures S8A and S8B). We

aimed to generate an immunocompetent orthotopic model of

ORlow and ORhigh tumors by mixing E:C:EC GL261 cells in

73%:19%:8% and 22%:60%:18% ratios, respectively, and in-

jecting the cell mixture into the brain parenchyma of C57BL/6

mice (Figure S8C). However, already at day 21 post-transplanta-

tion, the composition of the syngeneic tumors had shifted from

the initial clonal mixture, suggesting faster elimination of cells

harboring EGFR overexpression (Figure S8D). This finding could

be explained by a higher frequency of infiltrating microglia, the

resident brain macrophage population, in tumors composed of

only EGFR-overexpressing cells compared with tumors gener-

ated by WT GL261, C, or EC cells (Figures S8E–S8J). Selection

against EGFR-EGFP expression is also supported by a loss of

signal from this construct in EC tumors, resulting in the appear-

ance of CDK4-only overexpressing cells (Figure S8D). Additional

studies tailored to follow the evolutionary clonal dynamics

among E, C, and EC cells with improved clonal retention,

possibly by decreasing the immunogenicity of fluorescent pro-

tein markers,43 will be needed to provide more mechanistic in-

sights into the interactions between these genetically distinct

clones and the immune microenvironment. Nevertheless, our

results suggest a possible divergent interaction between the im-

mune microenvironment and subclones harboring EGFR or

CDK4 overexpression.

DISCUSSION

The insight provided by single-cell studies into the diversity of

genomic alterations can drive a deeper understanding of the

subclonal structure of tumors not afforded by bulk tumor

sequencing-based approaches. Key to this understanding is

the interaction of a heterogeneous tumor microenvironment

with subclonal-level changes.

Our main finding is the identification of the OR of EGFR-CDK4

co-amplification as an indicator of distinct alteration and expres-

sion trends. This quantity is a subclonal-level property that can

only be obtained from single-cell data and is hidden by bulk tu-

mor sequencing analyses. High intratumor heterogeneity may

especially hamper the ability of bulk sequencing studies to iden-

tify prognostically relevant patterns of amplification occurrence

and co-occurrence. This fact is exemplified in our study, as

EGFR and CDK4 amplifications co-occur in 6.6% of nuclei

analyzed, yet in 8 out of the 17 analyzed tumors, the frequency

of these dual-amplified cells was more than three times higher

than that in at least one imaged region.

Based on TCGA bulk sequencing of GBM genomes, the fre-

quency of co-amplification of EGFR and CDK4 is 8.9% (22/248

IDHWT GBM) and is thus lower than our FISH-based call. Sin-

gle-cell RNA sequencing (RNA-seq)-based inference confirmed

that these subclonal genomic alterations do occur more

frequently than expected from bulk tumor data (5/20 and 4/7

tumors in the two cohorts we analyzed15,16). It is important to

note that these single-cell CNA estimates are based on a

sliding window average of the expression values of 100 neigh-

boring genes, centered at the gene of interest.14,44 Thus, focal

amplifications are difficult to infer from single-cell gene expres-

sion data alone, which could explain the overall lower diversity

of genotypes identified by inferCNV14,44 compared with what

we find experimentally by single-cell FISH quantification. In

the future, target-focused DNA-based methods such as

MissionBio’s Tapestri platform, currently only applicable to

fresh frozen tissues, could enable genome-wide genotyping

of subclonal co-amplifications of individual genes at the

single-cell level.

In our dataset, EGFR-amplified cells in tumors with low

EGFR-CDK4 co-amplification OR had a higher average copy

number and increased copy-number diversity of EGFR, as well
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as higher EGFR protein expression. EGFR amplification in

ecDNA may explain these observations. ecDNA, circularized

DNA fragments found in GBM and other tumors, contain an

oncogene together with an enhancer element, allowing for

increased gene expression.39,45,46 The circularized form

together with the lack of telomeres and centromeres contribute

to highly efficient replication of ecDNA, their asymmetrical

division between daughter cells in mitosis,47 and increased

heterogeneity, without the fitness penalty associated with

large genomic alterations.48Moreover, oncogeneswithin ecDNA

can be efficiently overexpressed through protein-tethered

ecDNA transcriptional hubs, enabling enhancer input between

different ecDNAmolecules.49 In GBM, extrachromosomal ampli-

fication of EGFR is well documented.50–52 Here, we also

confirmed by whole-genome sequencing analysis the complex

structure and heterogeneity of EGFR-containing amplicons in

selected tumors with a low EGFR-CDK4 co-amplification OR.

Thus, it is possible that our FISH-based analysis identified

tumors harboring ecDNA EGFR as a distinct class of tumors,

associated with low immune marker expression and high levels

of EGFR protein.

Our results demonstrate that higher relative frequencies of

cells with co-amplification of EGFR and CDK4 (or lower relative

frequencies of cells harboring EGFR amplification alone) are

associated with elevated levels of the CD163 protein, a scav-

enger receptor expressed in macrophages and monocytes and

a classical marker of M2/immunosuppressive polarization.53

This suggests that the immune cells infiltrating ORhigh tumors

may be predominantly of an immunosuppressive phenotype.

The small size of our cohort (n = 5–6 per group) precludes

survival analysis; however, high expression of CD163 alone

has been previously associated with poor outcome,41,42,54 and

tumor infiltration by the immunosuppressive macrophages is a

well-established hallmark of decreased survival for patients

with GBM.19,55

The link between GBM immune status and underlying ge-

netic alterations in the tumor was explored in several studies.

Most notably, inactivating mutations of the NF1 gene were

shown to be associated with increased expression of macro-

phage-related signatures.13,56,57 Tumor-infiltrating lymphocytes

are depleted and immunosuppressed in tumors representing

the classical-like subtype, harboring EGFR amplification and

PTEN deletion.57,58 These findings are consistent with our

observation that tumors with low EGFR-CDK4 OR, which are

also enriched with cells with a high EGFR copy number, had

lower expression of immune markers. Interestingly, our data

show that a higher relative prevalence of cells with dual

CDK4 and EGFR amplification was associated with a macro-

phage-enriched tumor microenvironment. This effect cannot

be explained by the presence of CDK4, as this amplification

alone has been linked to lower macrophage infiltration and

fewer CD4+ T cells.56 Our findings therefore imply that a sub-

population of GBM cells harboring a low level of EGFR amplifi-

cation that co-occurs with amplification of CDK4 is likely to

elicit different immunological effects than subpopulations of

cells with a single amplification.

Our study suggests that the assessment of co-amplification of

EGFR and CDK4 at the single-cell level by FISH could serve as a

proxy of immune status. Standard immunofluorescence to

assess immune infiltration is often difficult to quantify due to vari-

ation in staining intensity driven by technical issues and imaging

modality and, most notably, due to limitations in accurate cell

segmentation during image processing. Relying on a DNA-

based nuclear signal of a FISH assay alleviates these challenges,

as there is much less ambiguity about nuclear borders and

speckle count compared with relative intensity of staining quan-

tification. Quantification of FISH in thousands of cells could be

easily implemented in a standard pathology lab setting, as our

analyses were all done using open-source software and thresh-

olding of the signal is easier to benchmark for FISH than for

immunohistochemistry-based methods. Thus, the CNA status

of subclonal populations of cells within a tumor could serve as

a representation of tumor-intrinsic properties that can be linked

to tumor microenvironmental status. Recent developments in

spatial transcriptomics enabled the interrogation of the local

patterns of immune infiltration in GBM.24,57 However, a genomic

landscape inferred from sparse transcriptomic data59 does

not yet allow for confident calling for CNAs at individual

gene and single-cell levels. Combination of FISH and spatial

transcriptomic copy-number inference at single-cell resolution

may become a powerful tool in dissecting the interactions

between clonally diverse populations of cancer cells and their

microenvironment.

Limitations of the study
One limitation of this study is the relatively small size of our

GBM cohort, which consisted of 17 tumors. The spatial anal-

ysis performed in this study describes the local diversity within

a single biopsy and is thus not capturing location within the tu-

mor or within the brain. Larger studies including multiregional

biopsies and MRI-based location annotations will be required

to capture features associated with macroscopic diversity

in GBM.

Another limitation is that our amplification calls based on

single-nuclei FISH signal counts in FFPE tumor tissue cannot

be directly confirmed by single-cell sequencing methods.

Whole-genome sequencing of FFPE samples at single-cell reso-

lution60 is challenging to perform at scale. Other methods, such

as single-cell methylation profiling61,62 or single-cell RNA-seq

(scRNA-seq) provide sparse coverage, and thus smaller

genomic region gains identified by FISH, such as CDK4 in our

study, may not be detected. Improvements in throughput and

resolution of single-cell DNA profiling in archival specimen co-

horts will be necessary to address these issues.

Future studies including a larger number of samples from clin-

ical trials targeting CKD4, EGFR, or macrophages will shedmore

light on the utility of single-cell FISH signal quantification as a

prognostic and predictive tool. Development of immunocompe-

tent murine models recapitulating the genetic diversity of

human tumors will also be needed to uncover the mechanisms

driving the divergent co-evolution of the tumor and its

microenvironment.

Our study provides evidence that the presence of genetically

distinct subpopulations is associated with differences in the tu-

mor microenvironment. This relationship opens novel avenues

for utilizing established cytogenetic methods combined with
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spatial profiling to improve our understanding of the complex

cellular ecosystem of GBM.
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flin, R., Lange, J.T., Chamorro González, R., Weiser, N.E., et al. (2021).
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-CD163 (clone EPR19518) Abcam Cat#ab182422; RRID:AB_2753196

Goat anti-rabbit Alexa Fluor 568 Invitrogen Cat#A11011; RRID:AB_143157

Cd45-PE-Cy7 BD Biosciences Cat#561868; RRID:AB_10893599

Cd11b-AlexaFluor700 BD Biosciences Cat#557960; RRID:AB_396960

Ly6C-PerCP-Cy5.5 BD Biosciences Cat#560525; RRID:AB_1727558

Ly6G-PacificBlue Biolegend Cat#127612; RRID:AB_2251161

anti-Egfr Cell Signaling Cat#2232S

anti-Cdk4 Abcam Cat#ab137675

anti-GAPDH Cell Signaling Cat#8884S

Biological samples

GBM FFPE blocks Mount Sinai Medical Center,

Miami, Florida, USA

N/A

Chemicals, peptides, and recombinant proteins

dUTP Abbott Molecular Cat#02N32-050

Human COT1 DNA Invitrogen Cat#15279011

Vysis CEP hybridization buffer Abbott Molecular Cat#07J36-001

UltraPure 20x SSC Invitrogen Cat#15557044

NP-40 Sigma Cat#13021

ProLong Gold Antifade mountant with DAPI Invitrogen Cat#P36931

dNTP New England Bio Labs Cat#N0446

7-deaza- 20-deoxy-GTP Roche Cat#10988537001

Betaine Alfa Aesar Cat#J77507VCR

Platinum Taq Polymerase Life Technologies Cat#10966083

Proteinase K ThermoFisher Cat#AM2548

Antigen retrieval solution pH9 Dako Cat#S2367

Goat serum ThermoFisher Cat#31873

TruStain FcX PLUS Biolegend Cat#156603

Staining Buffer Biolegend Cat#420201

Critical commercial assays

QiaAmp DNA FFPE Tissue Kit Qiagen Cat#56404

AmpliSeq Cancer HotSpot Panel v2 kit Illumina Cat#20019161

GeoMx Digital Spatial Profiler (DSP)

Protein panel - service

Nanostring N/A

Nick Translation Kit Abbott Cat#07J00-001

DNA PCR-Free Library Prep kit Illumina Cat# 20041795

Deposited data

Whole genome sequencing This paper phs003100.v1.p1

Single-cell RNA sequencing from GEO Neftel et al.15 GSE131928

Single-cell RNA sequencing from

Broad Institute Single-Cell Portal

Richards et al.16 SCP503

Experimental models: Cell lines

U-87 MG ATTC Cat#HTB-14

DBTRG DSMZ Cat#ACC 359

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by lead contact, Michalina

Janiszewska (mjaniszewska@ufl.edu).

Materials availability
There are restrictions to the availability of patient tissue samples due to IRB and small amount of tissue available for this study

(archival blocks and microarray slide were mostly consumed during this study). Cell lines derived from GL261 are available upon

request.

Data and code availability
d De-identified human whole genome sequencing data have been deposited at dbGaP and accession number is listed in the key

resources table. They are available upon request if access is granted. To request access, contact dbGaP (dbGaP: https://

dbgap.ncbi.nlm.nih.gov). In addition, public summary-level phenotype have been deposited at dbGaP (dbGaP: https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003100.v1.p1) and are publicly available as of the date

of publication. The accession numbers are also listed in the key resources table. Preprocessed GeoMx, FISH and

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HEK-293T Sigma Cat#12022001

GL261 DSMZ Cat#ACC802

Oligonucleotides

STAR-FISH hTERT F1:

50CTATGGTTCCAGGCCCGTTC-30
This paper N/A

STAR-FISH hTERT R1:

50GGCTCCCAGTGGATTCGC-30
This paper N/A

STAR-FISH hTERT F2:

50TGTCGACGCAAAACCGGTTC

CGGCCCAGCCCTTT-30

This paper N/A

STAR-FISH hTERT R2:

50GCGATATGACGACGCGAAT

ACCCACGTGCGCAGC-30

This paper N/A

Specific-to-allele PCR-FISH:

+T + G+TCGACGCAAAACCGG+T+T + C

(+ indicates LNA modified bases)

This paper N/A

Recombinant DNA

BAC clone RP11-339F13 (EGFR gene) BACPAC Genomics N/A

BAC clone RP11-231C18 (PDGFRA gene) BACPAC Genomics N/A

BAC clone RP11-571M6 (CDK4 gene) BACPAC Genomics N/A

pLenti-CMV-Puro Campeau et al.63 Addgene Plasmid #17452

pLenti-CMV-Neo Campeau et al.63 Addgene Plasmid #17392

pLV-eGFP Enomoto et al.64 Addgene Plasmid #36083

pLV-mCherry Gift from Pantelis Tsoulfas Addgene Plasmid #36084

pLenti-CMV-Egfr-Puro This paper N/A

pLenti-CMV-Cdk4-Neo This paper N/A

Software and algorithms

ImageJ Schneider et al.65 https://imagej.nih.gov/ij/

R software R Core Team66 https://www.r-project.org/

Python Rossum et al.67 https://www.python.org/

Single cell FISH counting macro for ImageJ Janiszewska et al.68 https://doi.org/10.1172/jci.insight.147617

FlowJo Beckman Dickinson https://www.flowjo.com/

AmpliconArchitect Deshpande et al.38 https://github.com/nf-core/circdna.git

Code related to analyses This paper https://github.com/Michorlab/GBM_OR_immune

https://doi.org/10.5281/zendo.7618100
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OncoPanel data are available as part of the Supplemental Tables. This paper also analyzes existing, publicly available data.

These accession numbers for the datasets are listed in the key resources table.

d All original code has been deposited at https://github.com/Michorlab/GBM_OR_immune and is publicly available as of the date

of publication. DOIs is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue samples
All experiments with use of human tumor tissue were approved by Scripps Research IRB protocol #IRB-18-7209 and Mount Sinai

Medical Center IRB. Formalin-fixed paraffin embedded (FFPE) tissue blocks were provided by Dr. Cristina Vincentelli, Mount Sinai

Medical Center, under IRB exemption for discarded tissue. GBMpathology was confirmed for each block by a board-certified neuro-

pathologist. The cohort was comprised of 20 cases (10 female, 10 male) of IDH wild-type GBM and one recurrence. Clinical details

are shown in Table S1. Primary tumor samples were collected prior to treatment, with exception of a few cases receiving steroids

before surgery. Tissue microarray (TMA) was constructed by manually selecting four distant areas within each block, cores of

1mm diameter were punched. H&E staining of the TMA was used to assess presence of hemorrhage, microvascular proliferations,

and necrosis within each core, done by board certified pathologist, blinded to the other data derived from TMA. Two cores on H&E

slide were partially folded during tissue sectioning, therefore histological assessment of these cores was not included in the analysis.

Animals and tumor generation
All animal experimental procedures were approved by the Institutional Animal Care and Use Committee (protocol #18–031). Seven-

week-old male C57BL/6J mice (Jackson Laboratory) were injected intracranially with 80,000 GL261 cells in DMEM (Gibco). To

generate ORlow and ORhigh tumors, GL261 cells harboring EGFR, CDK4 or both oncogene overexpression were mixed as follows:

ORlow 73% of E, 19% of C, and 8% of EC GL261 cells, ORhigh with 22% of E, 60% of C, and 18% of EC GL261 cells. The injections

were performed using stereotaxic apparatus, to deliver the cells into right striatum (1mm forward and 2mm right of the anterior

fontanelle, 3mm vertical depth). 21 days post implantations animals were sacrificed, perfused with cold sterile PBS, and brains

were isolated into cold HBSSwithout ions and kept on ice. Dissociation of tumor and surrounding tissue was performed as previously

described.69

Cell line generation
The paternal GL261 mouse glioma cell line (DSMZ, ACC802) was used to generate Egfr, Cdk4 and Egfr+Cdk4 overexpressing

subpopulations by lentiviral transduction. Male sex of the cell line was confirmed by Y chromosome specific PCR. Murine Egfr or

Cdk4 was cloned into pLenti-CMV-Puro or pLenti-CMV-Neo plasmid (Addgene) and lentiviral particles were produced according

to Life Technologies protocols. After viral transduction GL261 cells were selected with 1.5 mg/ml puromycin and/or 300ug/ml

neomycin for 4 days and oncogene overexpression was confirmed by western blotting using anti-Egfr (Cell Signaling, 2232S,

1:1000), anti-Cdk4 (Abcam, ab137675, 1:5000), and anti-GAPDH (Cell Signaling, 8884S, 1:1000). Lentiviral particles for expression

of fluorescent proteins were prepared in the same way as described above using pLV-eGFP and pLV-mCherry vectors (Addgene).

Cells overexpressing eGFP and/or mCherry were sorted using BD FACS Aria III (BD Biosciences) and overexpression of the

oncogenes was again confirmed by Western blot analysis.

All cell lines were cultured DMEMmedia (Gibco) with 10% fetal bovine serum (FBS, Gibco) and antibiotics (100 U/mL penicillin and

100 mg/mL streptomycin, PenStrep, Gibco) at 37 �C in a humidified atmosphere with 5% CO2. Cells were routinely checked for

mycoplasma contamination using Mycoplasma PCR Detection kit (Applied Biological Materials, G238).

METHOD DETAILS

DNA sequencing and analysis
DNA was extracted from 30um sections of each FFPE GBM block, before cores for TMA construction were removed, using QiaAmp

DNA FFPE Tissue Kit (Qiagen) and libraries were prepared using AmpliSeq Cancer HotSpot Panel v2 kit (Illumina). This panel targets

2800 COSMIC mutations in 50 oncogenes and tumor-suppressor genes. The libraries were sequenced using 2 3 150bp MiSeq

format. For analysis DNA Amplicon Workflow version 3.24.1.8 + master was used. Sequences were aligned to reference human

genome hg19 using BWA-MEMWhole Genome Aligner version 0.7.9a-isis-1.0.2. Over 99.5% on-target aligned reads were reported

for each sample, base mismatch was �0.24%. Variant calling was done with Pisces Variant Caller 5.2.9.23, Illumina Annotation

Engine 2.0.11-0-g7fb24a09, Bam Metrics v0.0.22, SAMtools 0.1.19-isis-1.0.3.

For the whole-genome sequencing DNA was extracted from three 4um sections of three ORhigh and three ORlow tumors using

QiaAmp DNA FFPE Tissue Kit (Qiagen) and libraries were prepared using DNA PCR-Free Prep kit (Illumina). The libraries were

sequenced using 2 3 250bp NovaSeq6000 format.
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Whole Genome sequencing analysis was conducted using the in-house Whole-genome sequencing (WGS) pipeline. WGS imple-

ments Gene Analysis Toolkit (GATK)70 best practices and uses Sentieon’s bwa-mem aligner to align the FASTQ to GDC hg38 refer-

ence genome. Sentieon’s base quality recalibration is used on aligned BAM to generate recalibrated BAM. CNVkit71 was used to

determine the log2 copy number ratios from the recalibrated BAM. Further, chr12 and chr7 regions were plotted for all the samples

to separate tumors into high grade and low grade. Amplicon Architect was run using the nf-core circdna (https://github.com/nf-core/

circdna.git) pipeline to find the focal amplifications for EGFR and CDK4 genes.

GeoMx digital spatial profiling (DSP)
FFPE TMA was profiled using the commercial GeoMX DSP platform (Nanostring). TMA was stained with three fluorescent visualiza-

tion markers, GFAP (GBM cells and astrocytes), CD45 (immune cells), and aSMA (endothelial cells) and two panels of UV-cleavable

oligo-labeled antibodies (Table S2). Stained slides were then digitally scanned, and 96 regions of interest (ROI) were selected based

on the fluorescent channels, at least one ROI per TMA core. For TMA cores which displayed heterogeneity for the fluorescent

markers, two ROIs were selected. Selected ROIs were UV-illuminated to release the conjugated oligos and quantified on the

nCounter system (Nanostring).

Fluorescence in situ hybridization (FISH)
Bacterial artificial chromosome clones RP11-339F13 (EGFR gene), RP11-231C18 (PDGFRA gene), RP11-571M6 (CDK4 gene) were

obtained fromBACPACGenomics (formerly BACPACResources at Childern’s Hospital Oakland Research Institute) and validated by

PCR and FISH on xenografts with known amplification status (Figure S3). FISH probes were generated by Nick Translation (Abbott

Molecular, 07J00-001) using fluorescent dUTPs (Abbott Molecular, 02N32-050). The FFPE TMA slide that was used in GeoMx DSP

was de-mounted, washed in a series of increasing ethanol concentration solutions and incubated with hybridization solution contain-

ing 1:1:1 ratio of fluorescently labeled FISH probes, human COT1 DNA (Invitrogen, 15279011) and Vysis CEP hybridization buffer

(Abbott Molecular, 07J36-001) at 74�C for 7min and then at 37�C overnight. The slide was then washed for 2min with 0.4x SSC/

0.3% NP-40 at room temperature, 0.4x SSC/0.3% NP-40 at 74�C, 2x SSC/0.1% NP-40 at room temperature and 2x SSC at

room temperature; buffers made with UltraPure 20x SSC (Invitrogen, 15557044) and NP-40 (Sigma, 13021). After wash with PBS

and H2O, the slide was dried and mounted with ProLong Gold Antifade mountant with DAPI (Invitrogen, P36931). Imaging was per-

formed onOlympus FV3000 confocal microscope (Olympus), for each TMA core three z-stack images were taken andmaximum pro-

jections were used to quantify signals from the three fluorescent channels in each individual nucleus (ImageJ macro available upon

request).

STAR-FISH
The PCR conditions specific for hTERTC228T promoter mutation were optimized onDNA extracted fromU87 (hTERTC228Tmutant)

and HEK-293T cells (hTERT C228 WT) with primers F1: 50CTATGGTTCCAGGCCCGTTC-30, R1: 50GGCTCCCAGTGGATTCGC-30 in
first round and F2: 50TGTCGACGCAAAACCGGTTCCGGCCCAGCCCTTT-30, R2: 50GCGATATGACGACGCGAATACCCACG

TGCGCAGC-30 in second round (IDT). 1st round PCR reactions were set with 2.5 mM MgCl2, 200 mM dNTPs (with 3:1 mix of

7-deaza-dGTP:dGTP; dNTPs from New England Bio Labs, cat#N0446, 7-deaza- 20-deoxy-GTP from Roche, cat#10988537001),

0.8 M Betaine (Alfa Aesar, cat#J77507VCR), 200 nM of each primer and 0.125 U of Platinum Taq Polymerase (Life Technologies,

cat#10966083). After initial denaturation at 95�C for 1 min, 10 steps of 3 cycles each (95�C - 30 s, Tannealing - 30 s, 72�C - 20 s)

were performed, starting at Tannealing = 70�C ending at Tannealing = 61�C with DTannealing = �1�C between steps. Then 10 cycles

were performed at Tannealing = 60�C (95�C - 30 s, 60�C - 30 s, 72�C - 20 s), followed by final extension at 72�C for 1min. PCR conditions

for second round PCR were 2 mMMgCl2, 200 mM dNTPs (with 3:1 7-deaza-dGTP:dGTP), 250 nM of each primer, with 0.2 U of Plat-

inum Taq Polymerase. After initial denaturation at 95�C for 1 min, 18 steps of 3 cycles each (95�C - 30 s, Tannealing - 30 s, 72�C - 20 s)

were performed, starting at Tannealing = 70�C ending at Tannealing = 53�C with DTannealing = �1�C between steps. Then 15 cycles were

performed at Tannealing = 58�C (95�C - 30 s, 58�C - 30 s, 72�C - 20 s), followed by final extension at 72�C for 1 min.

Specific-to-allele PCR-FISH was performed as described previously.37 Briefly, after deparaffinization the FFPE TMA slide was

treated with Proteinase K (20mg/ml, ThermoFisher AM2548) and subjected to two rounds of in situ PCRwith amixture of primers spe-

cific to the hTERT C228T mutation. After in situ PCR, the slide was washed in a series of increasing ethanol concentration solutions

and hybridization of a probe specific to the PCR product (/5FAM/+T +G+TCGACGCAAAACCGG+T+T + C (+ indicates LNAmodified

bases), custommade by Life Techonologies, working stock 25 mM)was performed at 74�C for 7min and continued overnight at 37�C.
After post-hybridization washes, as in FISH protocol, the slide was mounted with ProLong Gold Antifade mountant with DAPI (Invi-

trogen, P36931). Imaging, 3 images per core, and image analysis was performed as for the FISH experiment (modified ImageJmacro

from our previous work68). This quantification allowed for classification of each individual nucleus as WT or MUT for hTERT promoter

mutation and downstream analysis was performed using R software.

Immunofluorescent staining
After deparaffinization, the FFPE sections were subject to antigen retrieval solution pH9 (Dako, S2367) for 20min in a steamer. Block-

ing with 10% goat serum (ThermoFisher, 31,873) in PBST at room temperature was followed by incubation with primary antibody for

CD163 (Abcam, ab182422, 1.4ug/ml working solution) at 4�C overnight. Next, the slides were washed 3 times with PBS and
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incubated for 1h at room temperature with goat anti-rabbit Alexa Fluor 568 (ThermoFisher, Invitrogen A-1101, 5ug/ml working solu-

tion). After washes with PBS, the slides were mounted with with ProLong Gold Antifade mountant with DAPI (Invitrogen, P36931).

Images were taken using Olympus FV3000 confocal microscope (Olympus) and image stitching was performed with CellSense

(Olympus).

Flow cytometry analysis
Cells were washedwith FACS buffer (2% FBS in PBSwith 2mM EDTA), followed by a blocking step with anti-mouse Cd16/32 FC block

(TruStain FcX PLUS, Biolegend, 156,603, 1:200) for 15min on ice. Cells were then stainedwith titrated antibodies for Cd45-PE-Cy7 (BD

Biosciences, 561,868, clone 30-F11, 1:400), Cd11b-AlexaFluor700 (BDBiosciences, 557,960, cloneM1/70, 1:800), Ly6C-PerCP-Cy5.5

(BD Biosciences, 560,525, clone AL-21, 1:200), Ly6G-PacificBlue (Biolegend, 127612, 1:200) in Staining Buffer (Biolegend, 420201) at

4�C for 20min. Cells were washed and resuspended in 300ul of Staining Buffer. Samples were analyzed on BD LSR II cytometer (BD

Biosciences). Gating and subpopulation analysis was performed using FlowJo software (BD Biosciences). Reported percentages

are given as the percentage of a parental gate, singlets discrimination was based on FSC and SSC scatters.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details for each experiment can be found in the respective figure legends.

GeoMX proteomic analysis
The datawere normalized to positive controls from the External RNAControls Consortium (ERCC) and IgG isotype controls per ROI to

account for differences in hybridization efficiency, background signal, cellularity, and size of ROIs. Tumor-level (core-level) protein

expression was calculated fromROI-level protein expression as a weighted (by ROI nucleus number) average over all ROIs in a tumor

(core) andmin-max rescaled to a [0,1] range for each protein to enable global comparison. Tumor-level expression profiles were used

in calculating Spearman correlations between proteins and performing hierarchical clustering on the dataset (Figure 2C). ROI-level

expression was used for establishing the relative inter-tumor to intra-tumor variability in protein expression via the Kruskal-Wallis H

test (Python SciPy) (Figure 2D). Here, each tumor constitutes a group, with within-group samples constituting all ROIs within a tumor.

All p values except where indicated are at the p < 0.01 significance level after FDR adjustment for multiple comparisons. Figure 2C

indicates distinct protein clusters, derived from hierarchical clustering. Correlations between pairs of clusters was computed as the

correlation between scores comprising the sum of normalized protein levels for all proteins in each cluster.

Single-cell genotype analysis
Cores for which no GeoMX data was available were removed from the analysis of both amplifications and TERT mutations due to

tissue quality concerns. Cells were considered to be amplified in a gene g if at least 6 copies of gwere recorded in that nucleus loca-

tion, analogous to the HER2 FISH scoring guidelines of the American Society of Clinical Oncology/College of American Patholo-

gists.72 Coordinates for which 50 or greater copies of any gene were recorded were removed from the dataset as these likely repre-

sent overlapping cells. The Shannon diversity index for genotypic diversity in each individual image i (Figure 3D) was computed as

Hi = � P

G˛G

RG;i log RG;i, where RG;i represents the proportion (if nonzero) of cells of genotype G in image i out of the set G of four

genotypes: E, C, EC, and N/O. Tumor-level genotype proportions were computed by aggregating (adding) data from all images in a

particular tumor. Spearman correlations between proportions (Figures 3E and S3C) were computed based on tumor-level propor-

tions using the R Hmisc package, with p values FDR-adjusted for multiple comparisons. Best-fit lines shown in Figure 3E were ob-

tained with an inverse (y = a/x + b) curve fit (Python SciPy) (top panels; negative Spearman coefficient) and linear fits (Python NumPy

polyfit) (bottom panels; positive Spearman coefficient). Computation of minimum relative distances (Figure 4G) was done by calcu-

lating in each image i, for each cell c of genotype G, the Euclidean distance d
ðcÞ
G;G to the nearest cell of the genotype G0 and the

Euclidean distance d
ðcÞ
G;G0 to the nearest cell of any genotype. The average minimum relative distance for genotype G and genotype

G0 (where we also consider G = G0) in image i is then given by

CRG;iD = C
d
ðcÞ
G;G

d
ðcÞ
G;G0

Dc˛Ci;G

where Ci;G is the set of all cells of genotype G in image i. Computation of clustering properties proceeded by implementing k-means

clustering (Python scikit-learn) in each image i for all cells c˛Ci;G. The optimal number of clusters (from 2 to 5) was selected by finding

the highest Silhouette score. The total sum of squares (TSS) was computed as Euclidean distances between all c˛Ci;G and themean

of c, c˛Ci;G. The between cluster sum of squares (BCSS) was then computed as the difference between the TSS and the within clus-

ter sum of squares, as given by the inertia property of the clusters obtained. BCSS/TSS represents the ratio of the between cluster

sumof squares to the total sum of squares and provides ameasure for the tightness of clustering of each genotype, with a higher ratio

indicating tighter clustering.
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The Shannon diversity index for copy number diversity in each individual image (Figure 4F) was calculated on a tumor level, after

aggregating all the images in that tumor. The frequency of each copy number in the relevant cell type (e.g., E cells) was divided by the

total number of cells of that type, and then the sum over those was taken. For a cell type \omega that would be \sum_{\omega copy

number}\frac{frequency of copy number}{total number of \omega cells}.

Integrative analysis
The odds ratio of EGFR and CDK4 co-amplification (EC genotype) is given by the odds of a cell being co-amplified given that it is

amplified in EGFR relative to the odds of a cell being co-amplified given that it is not amplified in EGFR, OR = ðNEC =NEÞ=
ðNC =NN=OÞ, where N is the number of cells with a given genotype. The OR is calculated as follows:

The odds ratio of a CDK4 amplification in a cell if EGFR is amplified in a cell is given by

OA =
NEC=ðNEC +NEÞ

1 � NEC=ðNEC +NEÞ
And the odds of a CDK4 amplification inna cell if EGFR is not amplified in a cell is given by

ON =
NC

��
NC +NN=O

�

1 � NC

��
NC +NN=O

�

So that the odds ratio of EGFR and CDK4 co-amplification is given by

OR =
OA

ON

=

NEC=ðNEC +NEÞ
1�NEC=ðNEC +NE Þ
NC=ðNC +NN=OÞ

1�NC=ðNC +NN=OÞ
=

NEC=ðNEC +NEÞ
NE=ðNEC +NE Þ
NC=ðNC +NN=OÞ
NN=O=ðNC +NN=OÞ

=
NEC=NE

NC

�
NN=O

The OR was computed in each tumor separately by combining data from all images in the tumor (Figure 4A). For subsequent anal-

ysis, tumors were divided based on their computed OR into tertiles representing low-OR (ORlow), middle-OR, and high-OR (ORhigh)

tumors. To determine statistical significance of distributional differences between the top and bottom tertiles in across the various

covariates tested, Mann-Whitney tests (Python SciPy) were employed. Associated proteomic analysis (Figures 5A and 5B) employed

tumor-level expression data, processed as described above.

Survival analysis
Separate analyses were carried out on clinical and proteomics data fromWang et al.40 (Figure 5D) and on clinical and mRNA expres-

sion levels (U133 microarray; Figure 5E) TCGA Firehose Legacy dataset. In each case, clinical data was combined with CD163

expression data to fit a Cox proportional hazard model (Breslow’s method), adjusted for patient age and sex, and compute a

95% CI. IDH-mutant tumors were excluded from the analysis. The Python lifelines package was used to fit the model, obtain

Kaplan-Meier curves, and perform a log rank test.

Single-cell transcriptomic data analysis
Single cell CNA were inferred from two different scRNAseq datasets: Richards et al.16 and Neftel et al.,15 using the inferCNV

R package v.1.3. Data from both studies was downloaded from the Single Cell Portal maintained by the Broad Institute, together

with sample metadata, including cell type assignment, as follows: normalized expression values log2(TPM/10 + 1) for Neftel

et al.15 and UMI counts for Richards et al.16

inferCNV was ran separately for the malignant cells of each patient with a standard window size of 100, and with the following pa-

rameters: HMM= true, HMM_type = ‘i3’, cluster_by_groups = TRUE, denoise = TRUE, analysis_mode = subcluster. For Neftel et al.,15

cutoff = 1 was employed (this data was generated with the SmartSeq2 technology), while for Richards et al.,16 cutoff = 0.1 was used

(data generatedwith 10XGenomics). inferCNV employs a 3-state HiddenMarkovModel, inferring neutral regions, amplifications, and

deletions. Reference cell types were set to Macrophages, Oligodendrocytes and T cells on the Neftel et al.,15 and to Immune and

Normal Brain on the data in Richards et al.16 Both datasets were assessed for the copy number status of EGFR and CDK4.

On the Richards et al.16 data, a Seurat object73 was created, with keeping only genes expressed in at least 10 cells, and only cells

that express at least 200 features. Further, cells for which more than 20% of the transcriptome was encoded by mitochondrial genes

were removed (43,177 cells analyzed). The data was preprocessed following the standard Seurat scRNAseq workflow, including

normalizing with SCTransform, running PCA, constructing the nearest neighbor graph from the top 30 PC components, and further

constructing the 2D UMAP representation. Cell types were assigned as non-immune, M1 and M2 macrophages, and T cells, using

heatmaps with expression of canonical markers,74 and expression scores of M1 and M2 macrophages (Tables S6 and S7). This

amounted to 16,629 cells classified as non-immune, 1,484 cells as T-cells, 18,134 as M1, and 6,920 as M2 macrophages. This

assignment matched very well with the provided annotation classifying cells into immune and non-immune.
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