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Abstract

Computational models can be applied to optimize treatment schedules 
and model treatment responses in cancer therapy. In this Review, we 
provide an overview of such computational approaches, including 
deterministic models, such as those based on ordinary and partial 
differential equations, stochastic models, spatially explicit agent-based 
approaches as well as control theory and machine learning methods. 
We discuss their advantages and current limitations in different 
scenarios. We outline how therapeutic decision-making can be aided by 
mathematical and computational approaches and how patient-specific 
responses can be assessed and incorporated into such methods. We 
also survey models that can incorporate adaptive changes throughout 
the course of treatment and discuss data and parameter estimation 
approaches. Finally, we highlight how such methods can lead to the 
identification of optimum treatment options for individual cancer 
and treatment types, and examine the challenges that remain to be 
addressed to enable the clinical translation of computational models  
in cancer therapy.
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this schedule is safe and efficacious. Such therapies are developed 
with the goal of reducing tumour burden and maximizing survival; 
however, resistance often arises and poses an obstacle to continued 
response under the recommended treatment even when therapies 
are initially successful.

Mathematical models can make use of available data and knowl-
edge of the underlying biological mechanisms of cancer growth and 
resistance to study the dynamics of treatment response and the emer-
gence of resistance, and to suggest more effective protocols10. Sce-
narios arising in cancer treatment, such as targeted agents with known 
resistance profiles, combination treatments such as chemoradiation, 
or immunotherapy, all require different computational modelling 
methods with different assumptions, input data and predictions. There-
fore, models developed to investigate and propose treatment strate-
gies in cancer vary greatly (Table 1); for example, some strategies aim 
to reduce tumour burden as quickly as possible before resistance can 
develop, generated through the acquisition of (epi)genetic changes 
during the continuous cell division of drug-sensitive tumour cells11,12. 
The emergence of resistance may then lead to changes in treatment 
schedules, treatment combinations or personalized dosages that do 
not fall into the ‘one-size-fits-all’ category of MTD-based drug dosing13. 
By contrast, in some approaches, the consideration of resistance can 
lead to a new goal, such as prolonged tumour control instead of tumour 
eradication. Cancer management strategies such as adaptive therapy14 
are subject to change as the tumour progresses or regresses during 
treatment. These strategies allow drug-sensitive tumour cells to survive 
with the aim that they will inhibit the growth of resistant subpopula-
tions through intratumour competition to delay the outgrowth of 
resistant cells, known as competitive release15.

In this Review, we discuss computational approaches to model-
ling cancer treatment response, studying the emergence of resistance 
and identifying optimum treatment strategies. We outline different 
methodo logical approaches and discuss their applications and poten-
tial for clinical translation. We conclude by summarizing the challenges 
and clinical opportunities in this field.

Ordinary differential equation-based models
As a tumour changes in size, composition and behaviour over time, 
ordinary differential equations (ODEs) are a useful tool in the inves-
tigation of cancer dynamics, in particular, the dynamics of treatment 
response. Using biological assumptions describing the growth dynam-
ics and interactions of cell types (Fig. 1a), a tumour and/or its micro-
environment can be mathematically described with a set of ODEs 
(Fig. 1b) and solved analytically, providing a trajectory of tumour 
growth over time given the initial condition (Fig. 1c). In addition, treat-
ment can be integrated as a time-dependent function affecting the 
system (Fig. 1d). At the population scale, ODE models can be used to 
understand the dynamics of different cell populations and their inter-
actions and allow researchers to explore how treatment interventions 
may affect the tumour (microenvironment) composition. These models 
can then be used to create strategies to combat the emergence of resist-
ance and influence the extent of intra-tumour heterogeneity16–20. As 
such, ODEs have long been used for investigating cancer treatment 
response; for example, the effects of radiation on cell survival was 
originally described by the linear-quadratic ODE-based model in 
1942 (ref. 21), which is still used today as the basis for modelling cell 
survival after radiation treatment owing to its close agreement with 
experimental results19. Similarly, ODE models are often used to under-
stand the population dynamics of tumour growth and resistance20,22–29.  

Key points

 • Computational approaches can be applied to describe the response 
of tumour cells to cancer treatment.

 • Such computational methods can be based on ordinary and partial 
differential equation modelling, stochastic modelling and spatially 
explicit agent-based models.

 • Adaptive treatment schedules and incorporation of patient-specific 
responses allow a personalized assessment of treatment options.

 • Control theory and machine learning methods, such as 
reinforcement learning, can be applied to design cancer treatment 
schedules.

 • Multimodal and longitudinal data sets could be integrated into 
patient-specific models to identify the best therapeutic options for 
individual patients.

Introduction
Cancer biology and clinical care have benefited greatly from large-scale, 
cost-efficient and high-throughput genomics approaches at the bulk 
and single-cell levels, which can be applied for tens of thousands of 
samples and millions of single cells1. In addition, phenotypic data 
of tumour and microenvironmental cells, such as growth rates, 
migration, invasion and interaction kinetics, can be obtained for 
multiple tumour types, treatments and in vivo models2, giving insight 
into tumour diversification during cancer progression and bottleneck 
effects of treatments. These approaches also allow the molecular profil-
ing of a patient’s tumour and, thus, the identification of the best treat-
ment option, thereby advancing precision medicine in immunotherapy, 
radiation, chemotherapy and combinations thereof3.

However, the complexity of human tumours at such high resolu-
tion requires new analyses to assess big data sets and filter important 
biological nodes, pathways and networks associated with treatment 
responses to create and choose the best therapeutic options for indi-
vidual patients. In particular, statistical and bioinformatic methods 
can be applied to identify differentially expressed genes4, proteins5 and 
metabolites6, correct for potential batch effects and confounders7 
and predict responders versus non-responders using multi-omics 
data sets8.

In many cases, however, these methodologies are limited to the 
identification of associations between molecular nodes and outcomes, 
precluding the study of causal relationships. To make mechanistic 
connections between inputs and outputs in large complex systems, 
mathematical and computational models can be applied, which enable 
a systematic analysis of scenarios, hypotheses and counterfactuals, to 
derive a quantitative, mechanistic understanding of cancer treatment 
response9,10 (Box 1).

The goal of cancer treatment is to improve patient survival. Clini-
cal strategies are routinely identified using preclinical data sets that 
suggest a potentially tolerable dose-concentration profile; these pro-
files are then tested in a phase I/II dose-escalation approach, in which 
patient groups are treated using successively escalating concentrations 
until the maximally tolerated dose (MTD) is reached. The expansion 
cohort and subsequent phase III trials are then used to ascertain that 
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In addition, quantitative systems pharmacology applies ODEs to pre-
dict drug response and to model biological pathways to aid in drug 
development30,31.

Treatment response modelling of drug resistance
Genetic alterations and non-genetic plasticity can be integrated into 
computational models of treatment responses32,33 to shed light on 
therapeutic opportunities34. For example, ODE-based models can be 
applied to predict treatment responses under different resistance 
mechanisms, such as drug-induced resistance that occurs if the drug 
causes a cell transition from a sensitive to a resistant phenotype, or 
acquired resistance that arises owing to non-genetic plasticity or the 
acquisition of genetic alterations20,22–29. Such resistance may exist prior 
to treatment onset or arise stochastically after initiation of therapy. 

Some treatment types, particularly those that induce cell killing 
through DNA damage, such as radiation, can also contribute to the 
generation of genetic resistance mechanisms35.

Mathematical models of tumorigenesis. Models combining sensi-
tive and resistant subclone dynamics in the presence and absence of 
treatment can be used to identify treatment strategies for delaying 
progression. ODE models allow the modelling of interactions between 
different cell types and the resulting cellular dynamics by describing 
cell-cell interactions without accounting for individual cell fates. For 
example, coupled linear ODEs can be applied to model the growth and 
transition between drug-sensitive and drug-resistant cells, which was 
found to have a more important role than selection in the emergence 
of resistance in HL60 leukaemic cells following treatment with the 

Box 1

Computational models
Mathematical modelling: the process of using mathematical 
formalism and concepts to quantitatively describe a system to 
explain phenomena and predict behaviour.
Computational modelling: the process of using computational tools 
and algorithms to simulate and study a system; applicable if simple 
analytic solutions are not easily accessible.
Adaptive therapy: the strategy of maintaining a stable tumour 
burden by modelling intratumour competition between sensitive 
and resistant cells and altering treatments and schedules.
Ordinary differential equation: an equation that describes how a 
dependent variable changes with respect to another independent 
variable.
Partial differential equation: an equation that describes how a 
dependent variable changes with respect to multiple independent 
variables.
Stochastic differential equation: a differential equation in  
which some terms are random variables, introducing noise into  
the system.
Control theory: a field of mathematics that deals with applications 
of dynamical systems that are designed to control a system to 
achieve a desired state.
Reinforcement learning: feedback-based machine learning 
that includes different data-driven methods to learn policies for 
sequential decision-making.
Evolutionary game theory: a mathematical formulation for 
describing the growth and evolution of multiple populations 
by accounting for competition between strategies, payoffs and 
interactions of individuals within the populations.
Reaction–diffusion systems: mathematical models that describe 
the interaction of multiple species as well as their spread across 
space over time.
Branching process: a stochastic process that models the growth 
and composition of a population of dividing individuals based on  
the rates of division, death and other transitions of the individuals.

Pharmacokinetic and pharmacodynamic modelling: Pharmacokinetic 
modelling is a mathematical or computational modelling approach 
to describe the effect of a drug over time in terms of drug efficacy 
(pharmacodynamics) as well as absorption, distribution, metabolism 
and excretion (pharmacokinetics).
Moran process: a discrete-time stochastic process for studying 
evolution in fixed populations; in each step, an individual is chosen 
to divide with certain probability according to its fitness while a 
randomly chosen cell dies.
Wright–Fisher process: a discrete-time stochastic process for 
studying evolution in fixed populations; in each time step, the 
composition of the current generation is drawn independently at 
random from all types in the previous generation.
Agent-based modelling: computational models for individuals 
based on a set of rules that use simulation to describe and predict 
emergent phenomena of complex systems.
Logistic growth: the logistic growth model of population growth 
characterizes growth as a sigmoid function: at the early stage, the 
population grows exponentially as resources are abundant; however, 
as the system approaches the carrying capacity, population growth 
reaches a plateau owing to limited resources.
Gompertzian growth: the Gompertzian growth function is a 
special case of general logistic growth. The Gompertzian function 
approaches two asymptotes (initial value on the left side and future 
value on the right side) at different rates.
Equilibrium point: in the theory of dynamical systems, an 
equilibrium point is a constant solution, also known as a steady 
state. In general, there could exist multiple equilibrium points in a 
system. Different initial conditions lead to different corresponding 
equilibrium points.
Deep neural network: a type of artificial neural network consist-
ing of multiple hidden layers between the input and the output.  
The network structure and algorithm are inspired by the human  
brain and use data as input to train themselves to learn the patterns 
of the data.
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chemotherapeutic agent vincristine22; in this work, a subpopulation 
of cells was observed to exhibit high levels of multidrug resistance 1 
(MDR1), conferring resistance to vincristine, and the growth rate of 
each cell type was then estimated in the presence and absence of the 
drug, revealing that selection plays a minor role in the emergence of 
MDR1-high cells. In a model of glioblastoma growth and treatment 
response, continuous dosing was determined to be the best strategy 
for slowing tumour growth while accounting for tumour heterogene-
ity and drug resistance36. This model was parameterized using in vitro 
treatment response data of glioblastoma cell lines and by incorporating 
patient pharmacokinetics data from clinical trials. Building upon a 
mechanism of resistance based on switching between transcriptional 
states in melanoma, a three-state model of drug-sensitive, pre-resistant 
and irreversibly resistant cells, in which pre-resistant cells act as an 
intermediate state between sensitive and resistant phenotypes prior 
to treatment with vemurafenib20, together with estimated param-
eters, demonstrated that continuous dosing is optimal across tested 
treatments including an alternating on/off schedule.

Adaptive therapy. An alternative approach for identifying treatment 
schedules is adaptive therapy, in which schedules are decided based 
on the current state and projected trajectory of the tumour, which 
may lead to a maintenance strategy exploiting intratumour com-
petition to suppress resistance14,37. One model of adaptive therapy, 
designed to modulate treatment to maintain a tumour’s size14, assumes 
that competition exists between tumour cells (Fig. 1e,f) and that there 
is a fitness tradeoff to resistance so that resistant cells are naturally 
suppressed by the drug-sensitive population (Fig. 1g). Other models 
investigating adaptive dosing strategies assume that the drug-sensitive 
tumour population competes with a pre-existing resistant population 
such that tumour control can be attained by maintaining instead of 
eradicating the drug-sensitive tumour cell population so that it may 

outcompete resistant cell clones23,24 (Fig. 1h). Such models typically 
use ODEs and integrate competition into the dynamics to describe 
the general behaviours of the populations when noise is negligible23,24. 
ODEs also enable the investigation of long-term behaviours, such as 
the stability of the solutions and how interactions between cell types 
affect such stability. If competition exists between cells, models need to 
account for cell–cell interactions and their effects on tumour dynamics 
(Fig. 1e–g); for example, in a model in which treatment induces resist-
ance, an increase in drug concentration does not always lead to a better 
treatment response, because the drug-induced transition to resistance 
can dominate the killing effect of high drug concentrations29. Using 
Lotka–Volterra dynamics of competition between sensitive and resist-
ant cells, a range of parameters can be defined, including the initial 
cell type distribution, growth rates and transition rates, with which 
to investigate predictive factors of the underlying tumour dynamics 
leading to changes in survival under an adaptive therapy strategy28.

Evolutionary game theory. Evolutionary game theory (EGT) has been 
used to understand competition and optimize adaptive therapy strate-
gies. EGT is a mathematical formulation describing the competition, 
along with strategies, interactions and payoffs (that is, fitness), among 
cell types in a population38. EGT employs ODEs to understand popu-
lation dynamic trends and how perturbations (for example, treatment) 
and cell–cell interactions affect such solutions. In models of cancer 
evolution that use EGT, the various ‘players’ are defined as populations 
in competition for resources15,37,39–42. Alternatively, a ‘game’ may take 
place between the physician and the tumour, suggesting that optimal 
strategies exist. For example, a physician may guide a tumour’s trajec-
tory by anticipating and monitoring resistance mechanisms to guide 
treatment decisions rather than by responding to resistance after 
it is observed43. In such a scenario, cancer cells are considered to be 
adaptable to strategies employed by the physician, a rational player, 

Table 1 | Computational modelling methods in cancer therapy

Model class Use case Advantages Disadvantages

Ordinary differential 
equations

Useful if drug response depends on the aggre-
gate behaviour of a large population of cells or 
molecules, and if the rules governing the time 
development of these populations in terms of  
their current states are known21

Mathematical results can 
describe the general behaviour 
of the system without resorting 
to simulations

Limited applicability owing to the 
modelling of general behaviours that do 
not account for stochasticity that may be 
present at early stages

Partial differential equations Useful if drug response depends on the 
spatiotemporal behaviour of large populations 
of molecules, and if the rules governing the 
development of these populations in time and 
space in terms of their current states are known56

Formal mathematical results 
are available, but analysis can 
be more challenging than for 
ordinary differential equations

Presents a balance between 
mathematical tractability and 
expressivity if spatial effects are 
important

Stochastic models Useful if drug response is inherently uncertain, 
often owing to the effect of stochasticity in small 
populations75

Enables a rigorous quantification 
of uncertainty for stochastic 
events

Mathematical analysis is highly 
specialized and can be challenging

Spatial and agent-based 
models

Useful if drug response depends on the 
spatiotemporal behaviour of individual cells108

Flexible framework; any rules 
can be incorporated as long as 
they can be coded in a computer

Requires computationally intensive 
simulations

Control theory Mathematical analysis framework for identifying 
optimal treatment schedules under a model; 
useful if the underlying model dynamics are not 
too complex127

Optimal schedules can be 
obtained by mathematical 
analysis

The need to specify a correct model 
for the system limits the applicability of 
control theory; some systems may be 
too complex to specify mathematically

Reinforcement learning Machine learning framework for identifying 
near-to-optimal treatment schedules; useful 
for data-rich settings, in which the model or 
real-world scenario is complex149

Flexible framework for obtaining 
near-to-optimal schedules for 
complex models and real-world 
settings

Computationally and data-intensive
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who is able to anticipate future events. This assumption creates a 
series of actions, in which the physician applies treatment and the 
tumour adapts in response, and knowledge of the tumour’s resistance 
mechanisms allows the physician to consider strategies that prolong 
the duration of response and possibly allow for a cure. Furthermore, 
EGT has been used to suggest strategies for combination therapy 
and to determine optimal schedules for multiple drugs to sensitize 
a population39 or treat different mechanisms of resistance40,44. Such 
models are also used to investigate treatment response, and, owing to 
the cyclical nature of adaptive therapies, the stability of such strategies 
can be studied to make decisions about treatment42 (Fig. 1h).

Understanding the underlying model of tumour development 
amid this competition between drug-sensitive and resistant cell types 
allows a comparison between strategies if faced with a heterogene-
ous tumour cell population. For example, a system of coupled ODEs 
describing drug-sensitive and drug-resistant cells shows that adaptive 
therapy may be beneficial, but that cell turnover and the rate of growth 
of the resistant population may serve as primary factors influencing the 
benefit of adaptive therapy27. In certain parameter regimes, however, 
conventional (that is, non-adaptive) therapies lead to better outcomes.

Targeting cancer metabolism
Treatment response modelling can also address the effects of therapies 
on the complex network of genomic, transcriptomic and metabolomic 
factors45–50; in particular, networks that may contain feedback loops 
and other motifs can be modelled using ODEs. For example, ODEs can 
be applied to study how such feedbacks affect long-term behaviours 
using stability analyses. Targeting cancer metabolism is the goal of 
many preclinical and clinical trials51,52, and several approaches were 
developed to model the treatment response of such strategies. For 
example, the inhibition of enzymes that catalyse certain metabolic 
pathways influences cell proliferation rates can be investigated by char-
acterizing the dynamics of metabolites in the pathways of glycolysis, 
glutaminolysis and the tricarboxylic acid cycle to identify the optimal 
target of metabolic enzymes for inhibiting the growth of Kirsten rat sar-
coma viral oncogene homologue (KRAS)-mediated pancreatic cancer 
cells45. Using this model, the relation of target enzyme knockdown and 
pancreatic cancer cell growth was studied, which may also be combined 
with the inhibition of glutamate oxaloacetate transaminase 1 (GOT1), 
a key enzyme for the regulation of glutaminolysis.

Furthermore, the steady-state dynamics of these models can 
be exploited to analyse the levels of the gene-regulatory factors 
AMP-activated protein kinase (AMPK), hypoxia-inducible factor 1 
(HIF1) and reactive oxygen species (ROS) in response to a treatment that 
inhibits the glycolytic pathway46,47. In particular, an ODE-based model47 
has predicted the existence of a stable, hybrid metabolic phenotype, in 
which both glycolysis and oxidative phosphorylation can be employed 
simultaneously in triple-negative breast cancer (TNBC) cells. The model 
established that the optimal therapeutic strategy for decreasing the 
aggressiveness of TNBC targets the pathways of glycolysis and oxi-
dative phosphorylation simultaneously. A multi-scale ODE model 
incorporating metabolite fluxes, gene regulatory networks and tumour 
growth dynamics can predict tumour treatment responses by modu-
lation of the Warburg effect, reverse Warburg effect and glutamine 
addiction in solid tumours48, revealing that population-scale growth 
of solid tumours can be inhibited by targeting the Warburg effect, that 
initial growth of tumour cells may be reduced by targeting the reverse 
Warburg effect, and that there is no obvious response to inhibition of 
glutamine uptake via the metabolic pathways included in the model.

A comprehensive perturbation analysis of a dynamical systems 
model of tumour growth in response to treatment was used to pre-
dict the most effective combination therapy for cancer cell types 
using oxidative phosphorylation versus glycolysis49. If tumour cells 
obtain energy from oxidative phosphorylation, the most effective 
therapy promotes glucose transporter 1 and inhibits pyruvate kinase 
isozymes M2. However, simultaneously promoting mammalian target 
of rapamycin (mTOR) and NADPH oxidase is most effective in highly 
glycolytic cancers. An ODE-based model was also used to characterize 
how the metabolic traits of cancer cells depend on the availability of 
glucose and glutamine in their environment50. This model predicted 
the changes in the genetic and metabolic profiles of melanoma cells in 
response to treatment with a proto-oncogene B-RAF (BRAF) inhibitor 
that suppresses glutamine uptake.

Partial differential equations
In contrast to ODE models that focus on temporal dynamics, partial 
differential equations (PDEs) capture the spatial and temporal dynam-
ics of tumour progression in response to cancer therapy53–58. A system 
of PDEs (Fig. 2a) can be used to predict treatment responses based on 
a spatio-temporal model of regulatory factors of tumour invasion, 
spatial competition between drug-sensitive and drug-resistant cells, 
and interactions between tumour cells and their microenvironment53–55 
(Fig. 2b). For example, a system of PDEs has been used to simulate the 
dynamics of intratumoural drug concentrations to model the treat-
ment response of a vascular tumour consisting of a mixture of cells 
with high and low drug susceptibility54. Comparing chemotherapeu-
tic administration by a bolus injection to continuous infusion of the 
same amount of drug showed that the treatment schedule by bolus is 
slightly better at inhibiting tumour growth and leads to a notably higher 
level of drug plasma concentration (related to drug toxicity) than the 
continuous infusion schedules. Alternatively, reaction-diffusion equa-
tions have been applied to simulate the spatio-temporal dynamics of 
drugs delivered to a tumour to predict the development of pre-existing 
and drug-induced resistant tumour subpopulations under treatment 
schedules with low or high drug dosages55; here, drug resistance of the 
whole population is amplified by high drug dosages through selection 
if resistance is pre-existing or independent of the drug; by contrast, low 
and medium dosages lead to higher levels of drug-induced resistance 
than high doses.

Angiogenesis, which involves interactions between tumour and 
endothelial cells, is an important factor in tumorigenesis59,60. Angiogen-
esis has been described using PDE-based models to predict responses 
to antiangiogenic therapy56–58; for example, the transport of endothe-
lial growth factors throughout the interstitium and vessel wall was 
modelled to predict antiangiogenic therapy effects on tumour vessel 
permeability and interstitial fluid pressure56. Such a model predicted 
that treatment inducing a decreasing level of convection of endothelial 
growth factors reduces peritumour hyperplasia and angiogenesis, 
eventually reducing the occurrence of lymphatic metastasis. As an 
alternative to angiogenesis, tumours can also progress through vessel 
cooption using pre-existing vessel networks. Tumour vessel cooption 
and angiogenesis were modelled by describing the crosstalk between 
tumour and endothelial cells as well as the concentrations of endothelial 
growth factors and oxygen transport58. This model was used to investi-
gate the effects of anti-angiogenesis and anti-cooption agents, showing 
that tumour progression is most effectively attenuated by a combi-
nation of both types of agent. Additionally, a sequential therapeutic 
strategy is more effective than a simultaneous administration strategy.
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PDE-based models can also be used in modelling drug deliv-
ery to predict the treatment response of solid tumours and tumour 
metastases61–63; for example, convection–diffusion equations were 
applied to model drug transport in a remodelled microvascular net-
work, induced by a solid tumour, to predict the dependence of drug 

delivery on different vascular networks conditions62. This model 
showed that an avascular network predicts more uniform and higher 
drug concentrations to reduce tumour growth than either a static or 
dynamic vascular network. In addition, a dynamic network predicts 
a more heterogeneous distribution of drug than a tumour without a 
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dynamic network or having no vasculature owing to increased inter-
stitial fluid pressure and irregular capillary networks generated. 
Convection–diffusion equations have also been used to simulate 
the pharmacokinetics of doxorubicin and ado-trastuzumab, which 
are used to treat breast cancer brain metastases, by modelling drug 
delivery across the blood–brain and blood–tumour barriers using 
microbubbles63. Microbubble-based drug delivery is based on a protein 
or lipid shell that is used in conjunction with ultrasound to disrupt the 
blood–brain barrier for chemotherapy delivery64. This model predicted 
that the application of focused ultrasound in combination with micro-
bubbles enhances the penetration of those two anti-cancer agents and 
improves drug delivery to the brain.

Stochastic models
ODE and PDE models represent deterministic descriptions of the aver-
age or aggregate behaviour of a biological system. They rely on the 
assumption that any stochasticity in the behaviour of the individual 
components does not relevantly affect their aggregated dynamics. 
However, in many situations arising in treatment response mode lling, 
the individual stochastic components of the system (for example, cells 
that stochastically either self-renew, differentiate or die) are not numer-
ous enough or sufficiently homogeneous to justify this assumption. 
For example, targeted cell populations might be small, as is often the 
case with (cancer) stem cell populations65 or when targeting minimal 
residual disease66, or when the tumour cell number substantially 
decreases during treatment. Moreover, tumours often contain small 
heterogeneous subclones that vary in sensitivity to treatment67. This 
phenomenon is especially relevant when considering the emergence 
of treatment resistance, which often starts with an initially rare resist-
ant subclone68. In those settings, the dynamics of interest are more 
adequately described by a stochastic model.

Stochastic models yield a probability distribution over a set of 
possible outcomes (Fig. 3a). With small or heterogeneous popu lations, 
optimal treatment regimens can vary among this set of outcomes. 
Owing to the greater role of stochasticity, even subpopulations 
with comparatively higher proliferation rates, which are on average 
expected to increase in frequency, have non-negligible extinction 
probability. Thus, such stochastic fluctuations can mark the dif-
ference between resistant clones becoming predominant or being  
eradicated.

Treatment administration schedules often need to strike a bal-
ance between targeting different clones that respond best to different 
therapeutic agents. In the short term, targeting the most frequent 
and proliferative clone yields the largest reduction in tumour growth. 
However, continued treatment of a less abundant clone, until it is fully 
eradicated, prevents this clone from resurging when treatment is inter-
rupted or if the dose is altered, which might result in more successful 
treatment outcomes in the long term. To optimize such schedules, it is 

important to create an accurate description of the stochastic dynamics 
of proliferation and possible extinction of individual clones.

Stochastic models for population dynamics
Branching processes. Branching processes can be applied to 
model ling the division and mutation-accumulation dynamics of cell 
populations11,69–71. In these models, individual cells are categorized by 
type (or state). For each type, the corresponding rates, or probabili-
ties, of death, division or transitioning to another type are specified, 
and the model tracks the number of cells of different types (Fig. 3b). 
An advantage of this representation is that the branching behaviours 
of a cell and its descendants follow the same rules, so that recursive 
formulations can be used to analytically describe aggregate properties 
of these processes. Furthermore, explicit formulas for the distribu-
tion of single-type branching processes exist69, as does a central limit 
theorem for multi-type branching processes72, allowing the use of 
approximations, which are faster than simulation and account for 
variability when estimating model parameters73.

Branching processes can be used to model the dynamics of treat-
ment response and the development of resistance if treatment-sensitive 
cells may become quiescent74, for example, to investigate the dynam-
ics of acquired resistance owing to the T790M mutation in epidermal 
growth factor receptor (EGFR)-mutant non-small-cell lung cancer 
treated with erlotinib75. Here, resistant cells were identified to have 
a selective disadvantage in the absence of treatment, and stochastic 
modelling was used to identify optimum erlotinib administration strat-
egies, which were later tested in a clinical trial76. A branching process 
model of primary and metastasized pancreatic tumour cells, param-
eterized with human clinical data, revealed that delay in treatment 
initiation can have negative consequences for survival outcomes77. 
Branching process models have further been applied for treatment 
optimization12,78, for example, in the treatment of chronic myeloid 
leukaemia and acute myeloid leukaemia12,78, investigating different 
drug cycles to improve outcomes, such as delayed emergence of resist-
ance as compared to single-drug treatments. Similarly, such models 
have been used to study the dynamics of resistance to specific drugs 
or drug combinations and the efficacy of treatment regimens that 
combine several drugs70. Moreover, branching process models have 
found application in the optimization of screening strategies79,80.

Branching processes and pharmacokinetics. Branching processes 
can also be combined with pharmacokinetics models to capture the 
variability in how administered dosages translate to effective concen-
trations in the target tissue, depending on patient-specific character-
istics (Fig. 3c). For example, a model of cell type-specific combination 
responses to osimertinib and selumetinib in EGFR-mutant non-small-
cell lung cancer was combined with a two-parameter exponential 
decay model to describe the change in drug concentration over time 

Fig. 1 | ODE-based models. a, Deterministic modelling begins by specifying the 
biological processes and assumptions of the proposed model. A model of sensitive 
and resistant cells without competition leads to undisturbed growth of the 
resistant population when treatment is applied. b, Biological models are written as 
a system of ordinary differential equations (ODEs) describing the dynamics of the 
sensitive (x1) and resistant (x2) populations modelled. c, Under different conditions, 
such as without or with treatment, analysis of the system of ODEs provides a 
trajectory over time given the initial condition. d, Knowledge of the dynamics 
under the initial conditions and environment allows the construction of different 

scenarios, in which the therapy can be changed over time to propose strategies for 
treatment. Continuous and intermittent therapies can lead to different outcomes 
and resistant outgrowth. e, Adaptive therapy incorporates competition between 
sensitive and resistant cells into the underlying model. f, ODEs for competition 
models depend on the state of other species in the population. g, In tumours without 
treatment, one population may shrink that would otherwise grow if treatment is 
applied owing to the suppression of the fitter population. h, These dynamics can  
be used to formulate strategies for maintenance of a tumour if resistance would be 
the likely outcome of treatment. MTD, maximally tolerated dose.
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after administration81; here, conditioning treatment regimens on 
these two patient-specific parameters notably improved treatment 
efficacy and/or reduced toxicity. Similarly, combination schedules 
of dacomitinib and osimertinib were investigated in EGFR-positive 
non-small-cell lung cancer13 to analyse different dosing regimens by 
integrating a branching process model of the population dynamics 
of drug-sensitive cells and different types of resistant cells with phar-
macodynamics models; here, optimal dosing schedules consist of 
low, frequent doses of osimertinib combined with fewer, high doses 
of dacomitinib, a suggestion that led to the implementation of a phase I 
clinical trial82 (NCT03810807).

Branching models considering interdependence. In situations 
in which the type space becomes too complex or the behaviour of 

different cell types too interdependent, branching processes are less 
analytically tractable. There are, nevertheless, successful applica-
tions of branching process models in scenarios with interdependent 
rates, for example, to model population dynamics during immuno-
therapy; in this model, death rates of melanoma cells depend on the 
prevalence of T cells83. Another important case of interdependence 
between cells is given by capacity constraints, which cap the expan-
sion of a cell population at some limit, and which consequently bring 
about a negative interdependence between the expansion of different 
subclones. Interdependence between lineages has also been described 
using logistic branching process models77, for example, to investi-
gate capacity-constrained expansion of pancreatic tumours and their 
response to treatment with the chemotherapeutic agents folfirinox 
and gemcitabine84,85.
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Fig. 2 | PDE models. a, Partial differential equation (PDE) models incorporate 
dynamics in time and space by accounting for cells, drugs and growth factors in 
the system along with their spatial distribution and movement over time. b, A PDE 
model of angiogenesis can model the delivery of drugs through the vasculature 
and extravasation into the tumour as well as diffusion in the tumour. The growth 

dynamics (proliferation and death) are incorporated, along with the movement 
and interaction with other cell populations. D, a function representing the 
diffusion coefficient; f, g1, ..., gn; functions representing the respective reaction 
terms; p1,..., pn, density functions of different types of cells and drugs; q, a density 
function of endothelial growth factor; t, time;  x, location.
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Moran and Wright–Fisher processes. The Moran process86,87 and 
the Wright–Fisher process can model competition and replacement 
between cells and allow some analytical exploration88 (Fig. 3b). In the 
Moran process, the population is fixed at a certain size and each divid-
ing cell consequently replaces another randomly chosen cell. Division 
likelihoods at each time step are set to be proportional to a cell-type-
specific fitness value. If fitness is constant across types, this process is 
entirely governed by genetic drift, whereas increasing differences in 

the fitness values between types result in a higher selection relative to 
drift. The fitness may further depend on the administered drug dose. 
For example, a model in which drug-sensitive cells have a higher fitness 
than drug-resistant cells in the absence of a drug89 enables the investiga-
tion of the efficacy of adaptive treatment schedules, which periodically 
allow drug-sensitive cells to proliferate to antagonize resistant cells.

In the Wright–Fisher process (Fig. 3b), the population also remains 
at a fixed size, but the evolution of the cell population is modelled as a 
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the deterministic result (red). b, The branching process, Moran process and 
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schedule optimization workflow in frameworks that combine stochastic population 
dynamics models with pharmacokinetics and pharmacodynamics models.
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sequence of disjoint generations. At any time step, the type composi-
tion of the current cell generation is drawn according to a distribution 
wherein each type has a weight proportional to a type-dependent fit-
ness multiplied with the number of cells of this type in the previous gen-
eration. In the context of treatment response modelling, this stochastic 
process has been applied to demonstrate the value of monitoring in 
adaptive therapies90.

Hybrid models. Hybrid models comprising systems of differential 
equations often remain tractable even if some variables are assumed 
to be stochastic. For example, a stochastic differential equation model 
has been used to describe intermittent androgen deprivation therapy 
in prostate cancer with stochasticity in growth rates and antigenicity 
of tumour cells91. Similarly, a mechanistic model that includes a noise 
component in the system of differential equations describing the 
growth dynamics of cancer cells and cytotoxic T lymphocytes allows 
for investigation of how the efficacy of oncolytic virus therapy targeting 
tumour cells depends dynamically on the prevalence of virus-specific 
cytotoxic T lymphocytes92. This framework was used to predict the like-
lihood of treatment success given various parameters governing cell 
growth and the transmission of the virus. Furthermore, an ODE-based 
model of glioblastoma treatment response to radiation was designed 
by extending the linear quadratic model such that tumour cells asyn-
chronously exit quiescence after administration of radiation19. This 
model was applied to establish an alternative radiation administration 
schedule that nearly doubled the efficacy of each Gray of radiation 
administered compared to the clinical standard-of-care schedule, 
a finding that was validated in a mouse model and tested for feasibility 
in a pilot clinical trial (NCT03557372)93. Stochastic differential equa-
tion models have also been used to model the response of prostate 
cancer cells to intermittent hormone therapy by accounting for noise 
in both growth response and treatment monitoring94. In addition,  
a model of metastases and resistance to targeted therapies allows for 
assessment of how combinations of different targeted therapies can 
prolong progression-free survival53.

Stochastic drift and diffusion models have found application in 
modelling tumour growth and cell migratory behaviour. For example, 
stochastic versions of the Gompertz diffusion process enable estima-
tion of the effect of treatment on the growth rates of cells, which can 
be parameterized for uveal melanoma patient-derived xenografts95. 
Moreover, stochastic differential equations can describe the inter-
dependent migration of epithelial and mesenchymal cells into the 
surrounding tumour and microenvironmental tissue96.

Spatial and agent-based models
Agent-based models (ABMs) use simulation to investigate cancer 
treatment dynamics at single-cell resolution by simulating every cell’s 
potential fates, such as movement, division and death, at each time step 
(Fig. 4a). Simple spatial ABMs assume that cells occupy sites on a grid 
(or lattice) and formulate a set of rules for how each cell interacts with 
neighbouring sites in the tumour microenvironment at each time step97. 
Particularly important is the ability of ABMs to capture spatial hetero-
geneity in treatment efficacy; for example, the tumour cell’s proximity 
to a blood vessel could affect the effectiveness of chemotherapy98. 
ABMs can be used to address this scenario by explicitly modelling 
angiogenesis and the tumour vasculature99. ABMs are also capable of 
accurately modelling the spatial distribution of tumour subclones, 
showing that tumour evolution is dependent on its spatial structure and 
architecture100. Simpler mathematical models often assume that the 

tumour population is well mixed (that is, that subclones are uniformly 
distributed within the tumour)101. In solid tumours, this assumption is 
violated, because the process of somatic evolution implies that nearby 
cells are more likely to have a recent common ancestor102. As a result, 
treatment-resistant subclones are expected to occupy spatially local-
ized regions of the tumour. Importantly, spatial diversification of cells 
within tumours is related to outcomes, reinforcing the notion that 
space is important in accurately modelling a treatment response103.

The high resolution and flexibility of ABMs come at a price, as they 
are rarely mathematically tractable and must use simulation to study 
population behaviours104. However, the dynamics of some ABMs may 
be studied through ODEs and other methods105,106. As a result, efficient 
algorithms and high-performance computing are often necessary 
to simulate large tumour populations; for example, a recent ABM 
simulation107 required 36 million CPU hours. Parameter tuning and 
optimization are also challenging, because complex ABMs can contain 
hundreds of parameters, many of which might be difficult to measure 
in patients or realistic model systems.

On-lattice versus off-lattice models
ABMs are classified as on-lattice if they assume that cells occupy 
sites on a grid (Fig. 4b). On-lattice extensions of birth–death pro-
cesses can be used to model spatial intratumour heterogeneity and 
treatment resistance108,109. In these models, cells only replicate into 
unoccupied adjacent sites. These models are examples of stochastic 
cellular automata if time is discrete or interacting particle systems 
if time is continuous110. The spatial constraints on division restrict 
the growth rate to approximately t3 (in the three-dimensional case) 
as opposed to approximately exp(t) in its non-spatial counterpart. 
On-lattice models have the advantage that they are typically more 
computationally efficient than off-lattice models. Several software 
packages can be used to simulate tumours with billions of cells; for 
example, Tumour Generator108 (C++) and SITH111 (R) implement a basic 
three-dimensional on-lattice model and offer the possibility of mode-
lling treatment-resistant clones and targeted therapy. CHESS109 (R/C++) 
uses a slightly different model, in which tumour cells push others out of 
the way during division. J-Space112 ( Julia) implements a variety of inter-
acting particle system models and allows the generation of synthetic 
next-generation sequencing data from the simulated tumour. Finally, 
CancerSim113 provides a basic two-dimensional on-lattice simulator 
for Python users.

Off-lattice models increase flexibility by allowing cells to be 
arranged into an arbitrary configuration (Fig.  4c). A subclass of 
off-lattice models, known as deformable cell models, account for cell 
plasticity by explicitly modelling cell shape and boundaries (using 
polygons, for example)114. The software package Cancer, Heart and Soft 
Tissue Environment (CHASTE)97 simulates off- and on-lattice models 
under a variety of different assumptions about cell states and interac-
tions; for example, CHASTE can be used to investigate colorectal cancer 
initiation, because it accurately models the structure of crypts while 
considering heterogeneous cell types (for example, stem cells versus 
differentiated cells)115. The software package PhysiCell116 has also been 
applied to simulate interactions between immune and tumour cells, 
providing a useful tool for investigating response to immunotherapy.

Spatial competition limits treatment-resistant subclones
An on-lattice model of tumour growth and targeted therapy sug-
gests that a high rate of long-range migration results in faster tumour 
recurrence108; here, increased cell motility leads to a more spatially 
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dispersed, resistant subclone, which results in less spatial competition 
(that is, faster growth rate) if targeted therapy kills the non-resistant 
subclone. Indeed, the non-resistant subclone could constrain the 
growth of the resistant subclone14,117 (Fig. 1b), as shown using an 
off-lattice model comparing the conventional treatment schedule of 
applying the MTD to an adaptive schedule with dose modulation and 
treatment vacations. In heterogeneous tumours, MTD consistently led 
to unconstrained growth of the resistant subclone. Under the adaptive 
schedule, spatial competition kept the resistant subclone in check, 
but ultimately, no single strategy was consistently better. The finding 
was validated in vitro by showing that chemotherapy-sensitive MCF7 
cells outcompete resistant cells in co-culture117; however, the presence 
and extent of competition in human tumours remain to be validated.

Agent-based models can also be used to test adaptive therapy 
strategies of multiple drugs with multiple resistance mechanisms; 
for example, one study using in silico experiments suggests that dose 
modu lation tends to fare better than conventional fixed dosages across 
a range of parameters not meant to represent a particular drug or cancer 

type118 (Fig. 4d). ABMs have also been applied to investigate the effects 
of space on the tumour to identify the primary features that influence 
competition and to determine treatment response kinetics119. Exploit-
ing intratumour competition to decide on a strategy of containment or 
maximal cell kill, ABMs can also account for patient variability, as each 
patient’s tumour spatial heterogeneity is likely to be unique and thus 
the benefits of adaptive therapy or curative therapy may also vary28.

Hybrid models combine ABMs (addressing position of a cell in 
space) with ODEs or PDEs (to model continuous features of the tumour 
microenvironment) to consider diffusion of chemokines, drugs or 
oxygen120; for example, in a hybrid model, cells were assumed to occupy 
lattice sites and oxygen and drug concentrations were modelled with 
diffusion equations121. In this model, the relative benefit of an adaptive 
schedule (as opposed to MTD) was quantified as a function of the fit-
ness of resistant cells. An extension to the PhysiCell ABM framework116, 
called PhysiPKPD, introduced pharmacodynamics and pharmocoki-
netics modelling of drug delivery using ODEs in addition to ABMs that 
model tumour cells and local diffusion of the drug after extravasation 
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into the tumour122. This framework allows in silico experiments of 
different drug schedules and accounts for the administration and 
distribution of the drug in the body.

Modelling the tumour microenvironment during treatment
The flexibility of ABMs allows them to capture the idiosyncrasies of 
tumour microenvironments that cannot be considered in standard 
mathematical models. For example, glioblastomas have a distinct 
spatial structure (called a perivascular niche), in which a blood vessel 
is surrounded by resistant stem-like cells and sensitive differentiated 
tumour cells (Fig. 1c). After radiation, cells can transition between the 
differentiated and de-differentiated states. An ABM was formulated 
that captures the structure of the perivascular niche, accounting for 
cell-state switching during treatment as well as the pharmacokinetics 
of the chemotherapeutic agent temozolomide107. This ABM was used to 
find the optimal schedule of combining temozolomide with radiation, 
which was validated in a mouse model, leading to notably improved 
survival times as compared to a scramble control schedule.

ABMs can reduce modelling assumptions and increase robust-
ness by using genomic data as a baseline; for example, an agent-based 
model parameterized by data from fluorescence in situ hybridiza-
tion (FISH) experiments was applied to study genetic heterogeneity 
and phenotypic diversity at the single cell level in a cohort of pre- and 
post-treatment breast tumours123, showing that cells post-treatment 
strongly cluster by phenotype (as opposed to genotype). This spatial 
clustering can in principle be due to phenotypic switching, cell motility 
or both, and delineation of the contribution of both factors is of clinical 
interest. An ABM based on CHASTE that does not include motility or 
phenotypic switching was found to generate substantially less spatial 
clustering compared to the observed data123, suggesting that switching 
and motility take place in this cancer type and differ between subtypes 
of the disease. Importantly, the ABM uses the FISH results from the 
baseline samples to specify the initial coordinates and phenotypes 
of cells, highlighting the ability of ABMs to use real data to bypass 
additional modelling assumptions. These examples demonstrate the 
usefulness of ABM for studying cancer treatment response, in particu-
lar, if spatial considerations are essential for accurately describing a 
cell’s response to therapy.

Control theory and machine learning approaches
A longstanding aim of computational approaches in cancer research is 
the optimal scheduling of therapies to maximize overall patient benefit. 
Optimal control theory (OCT) is a branch of mathematics concerned 
with identifying the interventions in dynamical systems that produce 
the best possible outcomes, providing another framework for mode-
lling. For example, OCT can be applied to balance treatment toxicity 
with efficacy, and to assess tumour–immune dynamics, tumour–virus 
interactions, and the development of therapy resistance under treat-
ment. Similarly, reinforcement learning can be used to improve cancer 
therapy scheduling. Reinforcement learning and OCT both attempt to 
automate learning and decisions via a controller (intervention) that 
optimizes a system’s behaviour over time. OCT can also be charac-
terized as a subtype of reinforcement learning, given that reinforce-
ment learning may be more broadly defined as a class of methods that 
attempt to understand and automate decisions under a framework, 
in which the decision-maker (or agent) directly interacts with its envi-
ronments, actions and rewards to maximize an objective124. Here, we 
distinguish between the two by focusing on the differences in their 
approaches to the same class of problem.

Optimal control theory
In OCT, externally manipulable variables (controls) are set such that 
some cost is minimized with respect to observed variables125. In a typ-
ical cancer therapy setting, the observed variables might describe 
time-varying tumour population sizes, whereas the controls might 
describe time-varying drug concentration, and the cost is the final 
number of tumour cells at the end of treatment and the total drug doses 
applied over the course of treatment126 (Fig. 5a). For example, OCT has 
been used to model the evolving total number of tumour cells in multi-
ple myeloma under treatment with the chemotherapeutic agents mel-
phalan, cyclophosphamide and prednisone127; here, tumour cells are 
assumed to follow carrying capacity-limited growth, and a saturating 
effect of drug treatment at high doses is considered to investigate the 
optimal dose schedule and minimize the total administered dose under 
an equality constraint on the final tumour size. This approach showed 
that the optimal dose decreases over the course of the treatment.

Because of these considerations, OCT allows the optimal schedul-
ing of cancer therapies23,24,107,126,128–138; for example, by generating mod-
els of tumour response to immunotherapies129–131 or viral therapies132–134, 
and of the dynamic outgrowth of therapy-resistant clones under 
treatment23,24,42,128,135,139. Optimal antigen receptor therapy dosing sched-
ules have been defined by modelling the interplay between tumour 
cells, osteoblasts and osteoclasts in the bone metastatic niche, account-
ing for life stage and changes in bone remodelling dynamics with age129. 
Here, the optimal schedules for different life stages and parameter 
settings vary in the total amount of administered drug and the tim-
ing of change points; however, each schedule consistently contains  
an initial fixed dose phase followed by a period of dose decrease.

OCT approaches have also been used to optimize treatments when 
considering situations in which resistance may arise. Here, the goal 
is to maximize time to progression with minimal drug administered 
(Fig. 5a); for example, optimal chemotherapy schedules were calcu-
lated that maximize the time until tumours reach a threshold total size, 
if tumours comprise a mixed population of therapy-sensitive and fully 
resistant cells under three scenarios of population growth dynamics: 
unconstrained exponential growth, carrying-capacity-limited logistic 
and Gompertzian growth139. The optimal approach under exponential 
growth involves eradicating the entire sensitive tumour population 
with treatment, whereas the optimal strategy for Gompertzian growth 
maintains the tumour at a large size. Under logistic growth, the choice 
of whether to maintain the tumour at a large or small size has limited 
effect on the success of the therapy. In addition, OCT was applied 
to study an evolutionary game theory model of castration-resistant 
prostate cancer dynamics15,135. By finding a stable, equilibrium point 
between cell types, the hormone therapy abiraterone was admin-
istered to steer newly diagnosed tumours towards this point, and a 
simple titration protocol was defined that gradually increases the 
dose before reaching a plateau of the average optimized approach 
across varying initial conditions. This strategy was predicted to out-
perform an aggressive treatment and an adaptive therapy approach. 
Furthermore, a model in which treatment can cause sensitive tumour 
cells to become resistant in a dose-dependent manner128 applies OCT 
to calculate an optimal schedule that minimizes the probability of 
resistance emerging from an initially fully sensitive population, which 
is close to a constant dose.

Reinforcement learning
Reinforcement learning is a subfield of machine learning that 
encompasses data-driven methods to learn policies for sequential 
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decision-making124,140. There are, broadly, two related ways in which 
methods from reinforcement learning are becoming relevant for 
computational approaches to scheduling cancer therapy.

First, reinforcement learning methods provide a flexible alterna-
tive to studying therapy scheduling under mathematical models of 
cancer therapy in situations in which features of the model make tradi-
tional OCT challenging (Fig. 5b). In these cases, reinforcement learning 
methods have been used in conjunction with extensive model simula-
tion to learn near-to-optimal policies under the model in a data-driven 
way141–147. In addition, stochastic optimal control methods exist128; 

however, high-dimensional model state spaces and nonlinear dynam-
ics pose challenges for traditional control methods148. Reinforcement 
learning methods have been used in conjunction with extensive model 
simulation to learn policies that perform well under the model141–147. For 
example, a deep neural network reinforcement learning model of can-
cer evolution under chemotherapy treatment was trained on in silico 
patients over the course of treatment141. In this approach, the schedul-
ing algorithm can control tumour cell proliferation in the context of 
emerging resistance. Similarly, a reinforcement learning model was 
parameterized by a deep neural network and trained using simulated 
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tumour growth data to suggest chemotherapy dosing schedules142; 
here, the trained algorithm performs competitively compared to an 
approach based on a traditional OCT analysis of the model (Fig. 5c).

Second, these methods may also be used in cancer therapy schedul-
ing by learning successful policies directly from high-resolution patient 
data149–151. For example, a neural network-based reinforcement learning 
framework based on patient-specific cytokine, imaging and dosage fea-
tures was used to suggest dose adaptations for patients with non-small-
cell lung cancer who undergo radiation149. The framework was trained on 
data from 114 patients, and the resulting treatment reco mmendations 
show common features with decisions recommended by the treating 
physicians, motivating further testing of the performance on inde-
pendent data sets. Similarly, a neural network-based reinforcement 
learning framework could make recommendations for a sequence of 
three clinical decisions in the care of patients with oropharyngeal squa-
mous carcinoma150. The decision-making system was trained on patient 
history features using retrospective treatment response data from 
402 patients and tested using held-out data from 134 patients. Using 
a predictive model trained on the same data set, it was predicted that 
the recommended decisions would have led to a small improvement in 
survival and dysphagia rate compared to standard treatments.

Outlook
Computational approaches can address a variety of questions in cancer 
treatment response dynamics and optimization, including the descrip-
tion of interactions between cell types and prediction of treatment 
outcomes to identify best treatment strategies, some of which have been 
tested in clinical trials (NCT03557372 (ref. 93), NCT03810807 (ref. 82), 
NCT02415621 (ref. 152), NCT03511196 (ref. 153), NCT03543969 (ref. 154), 
NCT03630120 (ref. 155)) (Table 2). However, challenges remain to be 
addressed to enable the broad clinical application of computational 
modelling in cancer treatment (Box 2). Importantly, the connection 
between data and model should be strengthened, both in the design of 
the model based on data-driven insights in cancer biology and treatment 
resistance mechanisms, and when measuring tumour burden and the 
pre-existence and/or generation and outgrowth of resistant clones over 
time. For example, methods are available for monitoring and quantifying 
the degree of resistance present at the start of treatment14,27,117. Similarly, 
tumour burden over time can be measured, for example, by assessing 

prostate-specific antigen (PSA) levels in prostate cancer, lactate dehy-
drogenase (LDH) in melanoma28 and circulating tumour DNA (ctDNA) 
in metastatic colorectal cancer50. Moreover, single-cell mRNA expres-
sion data can be used to identify and determine distinct transcriptional 
states with respect to BRAF inhibitor response in melanoma156. To make 
clinically relevant predictions and recommendations, the model design 
must reflect the true behaviour of the modelled system. Model fitting 
can, however, be more challenging in certain situations; for example, 
model parameterization is more complex for stochastic models than 
for deterministic models, as the variance of a process is itself an impor-
tant component of stochastic models; however, this variance might 
be obfuscated by further sources of variability in the measurement 
or by experimental processes. Model fitting in deterministic models 
consists of eliciting a mean behaviour of a system and removing noise 
in the system; by contrast, fitting stochastic models must additionally 
master the challenge of disentangling the intrinsic variance of a process 
from external sources of variance. Similarly, the design parameteriza-
tion of large complex computational models such as ABMs relies on 
data input from multiple sources so that cell behaviour, localization 
and interactions can be adequately described. Furthermore, model-
ling approaches may rely on assumptions that might not be accurate 
for specific situations, which can lead to overfitted or oversimplified 
models. The next generation of models should take advantage of the 
large amount of available patient data to produce more accurate and 
better parameterized descriptions of the biological system of interest.

Approaches could also be designed that learn successful treat-
ment policies directly from patient data; for example, historic patient 
time-course data has been used to train a reinforcement learning model 
to generate treatment suggestions for adult patients with sepsis in the 
intensive care unit157; here, in an independent cohort, mortality was 
lowest for patients whose actual received treatment matched what 
the system would have recommended, and mortality increased in a 
dose-dependent manner for patients whose treatment deviated from 
the recommendations. As we take advantage of the era of big data in 
cancer research, it is becoming increasingly possible to collect data 
with high temporal, spatial and molecular resolution136. In the future, 
it may be possible to use approaches, such as those outlined in this 
Review article, to train directly on patient treatment data to obtain 
improvements in patient care.

Table 2 | Clinical trials of computational models in cancer treatment

Clinical trial identified Disease Intervention Status Refs.

NCT03557372 Recurrent glioblastoma 
(stage IV)

Radiation schedule developed with a mathematical model Phase I completed 19,158

NCT03810807 EGFR-mutant lung cancer Model-optimized combination of dacomitinib and osimertinib Active, phase 1 13

NCT02415621 Prostate cancer Adaptive dosing of abiraterone based on an evolutionary game 
theoretic model

Active, early phase 1 15

NCT03511196 Prostate cancer Adaptive androgen deprivation therapy in combination with 
abiraterone and prednisone

Active, early phase 1 159

NCT03543969 BRAF-mutant metastatic 
melanoma

Adaptive dosing of vemurafenib and cobimetinib Active, recruiting, early 
phase 1

–

NCT03630120 Thyroid cancer Adaptive dosing of lenvatinib, sorafenib, cabozantinib and vandetanib 
(depending on subtype)

Phase 2 terminated owing 
to lack of efficacy

–

NCT01967095 EGFR-mutant lung cancer Erlotinib dosing schedule developed using a stochastic birth–death 
process

Phase I completed 75,76

BRAF, proto-oncogene B-RAF; EGFR, epidermal growth factor receptor.
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