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Tutorial: integrative computational analysis 
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tumor immunity using RIMA
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RNA-sequencing (RNA-seq) has become an increasingly cost-effective 
technique for molecular profiling and immune characterization of tumors. 
In the past decade, many computational tools have been developed to 
characterize tumor immunity from gene expression data. However, the 
analysis of large-scale RNA-seq data requires bioinformatics proficiency, 
large computational resources and cancer genomics and immunology 
knowledge. In this tutorial, we provide an overview of computational 
analysis of bulk RNA-seq data for immune characterization of tumors and 
introduce commonly used computational tools with relevance to cancer 
immunology and immunotherapy. These tools have diverse functions such 
as evaluation of expression signatures, estimation of immune infiltration, 
inference of the immune repertoire, prediction of immunotherapy 
response, neoantigen detection and microbiome quantification. We 
describe the RNA-seq IMmune Analysis (RIMA) pipeline integrating 
many of these tools to streamline RNA-seq analysis. We also developed a 
comprehensive and user-friendly guide in the form of a GitBook with text 
and video demos to assist users in analyzing bulk RNA-seq data for immune 
characterization at both individual sample and cohort levels by using RIMA.

In the past two decades, it has become clear that the immune system 
plays a significant role in tumor progression and metastasis. Cancer 
immunotherapies harness a patient’s innate and adaptive immune 
system to attack cancer cells. These immunotherapies include 
immune checkpoint blockade (ICB) therapy targeting cytotoxic  

T lymphocyte–associated protein (CTLA)-4, programmed death 1 (PD-1) 
and programmed death-ligand 1; adoptive T cell transfer of tumor-
infiltrating lymphocytes; chimeric antigen receptor T cells; and per-
sonalized cancer vaccines1. Cancer immunotherapy treatments have 
shown durable remission and clinical success in various cancer types. 
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in the GitBook website. The RIMA pipeline was developed for clini-
cal ICB analysis within the Cancer Immune Monitoring and Analy-
sis Centers-Cancer Immunologic Data Commons15 network (https://
cimac-network.org/) as part of the Cancer Moonshot initiated by the 
U.S. National Cancer Institute. RIMA performs data preprocessing, dif-
ferential gene expression analysis and immune-focused downstream 
analysis, including immune infiltration estimation, immune repertoire 
inference, immune response prediction, human leukocyte antigen 
(HLA) identification, gene fusion detection and microbiome analysis. 
The pipeline implements analysis at both individual and cohort levels, 
integrating comparative and association analyses between different 
immune features and clinical outcomes.

Read alignment and quality control
Quality control and read alignment are essential preliminary steps 
for RNA-seq data analysis. STAR16 is commonly used for RNA-seq read 
alignment and generates results in the binary alignment map (BAM) 
format at the transcriptome or genome level for downstream analysis. 
RseQC17 is a standard package for verifying the quality of raw RNA-seq 
reads and alignments with multiple built-in functions. For example, 
‘read_quality.py’ graphically displays the quality of each base call from 
the 5′ end to the 3′ end of a read. ‘tin.py’ quantifies the RNA transcript 
integrity number at the transcriptome level, and a median transcript 
integrity number (medTIN) score for all expressed transcripts can be 
used to infer the overall sample integrity and quality. ‘read_distribution.
py’ summarizes the fraction of reads aligned into different genomic 
regions, such as exon and intron regions. ‘geneBody_coverage.py’ 
provides RNA-seq read coverage over the gene body for all genes in 
the sample. ‘junction_saturation.py’ detects splicing junctions with 
different resampling percentages of reads to determine if the sequenc-
ing depth is sufficient to perform alternative splicing analysis18–20. In 
downstream analysis, users might consider removing low-quality sam-
ples with low alignment fractions (percentage of reads mapping to the 
genome <70%) and low integrity (medTIN < 30)21,22.

Gene quantification
After the alignment of RNA-seq reads, HTSeq23, RSEM24, Kallisto25 and 
Salmon26 are widely used for gene quantification using the BAM files. 
HTseq counts map reads to transcripts for gene quantification, which is 
not normalized by the sequencing depth and gene lengths. Transcripts 
per million (TPM) and reads or fragments per kilobase of exon per 
million reads are alternative measures of normalized gene expres-
sion levels that account for both sequencing depth and gene length. 
RSEM performs both gene-level and transcript-level quantification, 
generating both TPM and reads or fragments per kilobase of exon per 
million reads values. Kallisto and Salmon conduct fast transcript-level 
quantification with less memory consumption needed to generate 
TPMs as compared to RSEM. Pseudo-aligners like Kallisto and Salmon 
speed up alignment by using a transcript-level reference rather than a 
genome reference. The pseudo-aligner Kallisto runs on raw fastq files, 
while Salmon runs on both raw fastq and alignment BAM files. Although 
RSEM is considered the gold standard of RNA-seq quantification27, 
the pseudo-aligners Salmon and Kallisto, which can align reads to the 
transcripts faster without aligning reads to the genome, achieve almost 
as good accuracy as that achieved by RSEM, with a significant speed 
advantage (Fig. 2a).

Batch effect removal
Batch effects arise from systematic biases in experimental batches and 
can confound downstream cohort-level analyses such as the identifi-
cation of differentially expressed genes. Batch effects are easily over-
looked but necessary to consider when preparing the expression matrix 
input for bioinformatic algorithms. Principal component analysis or 
unsupervised clustering are generally used to identify and visualize 
potential batch effects within a cohort. If batch effects are present  

However, patient outcomes are heterogeneous and vary consider-
ably. Many studies have been conducted to identify molecular features 
associated with tumor immunity and immunotherapy response. These 
molecular features include (i) genetic markers, (ii) gene expression 
signatures, (iii) measures of tumor immune infiltration, (iv) immune 
receptor repertoires and (v) characteristics of the microbiome. First, 
tumor mutation burden is a well-known genetic marker of immuno-
therapy response, because a large tumor mutation burden is associated 
with better ICB patient outcomes in non-small cell lung cancer and 
metastatic melanoma2–4. In addition, strong MHC binding affinity and 
T cell recognition of missense mutation-derived neoantigens have also 
been correlated with positive survival5. Second, in addition to cancer 
genetic markers, immune-related gene expression signatures have also 
been shown to have prognostic and predictive value for tumor immu-
nity and immunotherapy response. Rooney et al.6 quantified tumor 
cytolytic activity from granzyme A and perforin gene expression and 
correlated this measure with a survival benefit and improved prognosis. 
Ayers et al.7 developed a 28-gene interferon-γ (INF-γ) signature predic-
tive of anti-PD1 response that encompasses genes related to antigen 
presentation, chemokine expression, cytolytic activity and adaptive 
immune resistance. Third, measures of tumor immune infiltration also 
have predictive power for tumor immunity: Gentles et al.8 revealed 
that tumor-associated leukocytes and prognostic genes are associated 
with tumor heterogeneity and cancer outcomes, and Thorsson et al.9 
integrated The Cancer Genome Atlas (TCGA) pan-cancer tumor gene 
expression profiles and identified six immune subtypes discriminated 
by tumor microenvironment (TME) features and survival outcomes. 
Fourth, profiling the immune repertoires of T cell receptors (TCRs) 
and B cell receptors (BCRs) helps elucidate the mechanisms of T and 
B cell tumor immunity: Zhang et al.10 revealed the effect of T and B cell 
clonal expansion in a TCGA acute myeloid leukemia dataset, showing 
that highly expanded IgA2 B cells were associated with overall sur-
vival; Hopkins et al.11 showed that the clonality of the T cell receptor 
repertoire is associated with patient survival and outcomes in anti-
CTLA4– and anti-PD1–treated pancreatic ductal adenocarcinoma; and 
Tumeh et al.12 also found a broader T cell repertoire inside the tumor 
of metastatic melanoma patients who responded to anti-PD1 therapy 
than in patients who did not. Finally, the microbiome also influences 
the host immune system and may contribute to cancer diagnosis and 
prognosis. For instance, Poore et al.13 examined microbial reads from 
TCGA transcriptome data and found tumor-specific microbial signa-
tures in tissue and blood samples, providing novel insights into the 
potential of microbiome-based cancer diagnostics. Furthermore, 
Gopalakrishnan et al.14 found that higher gut microbiome diversity is 
associated with an improved response to anti-PD1 immunotherapy in 
metastatic melanoma.

RNA-seq is a cost-effective and versatile assay for the characteriza-
tion of cancer cells and the tumor microenvironment. Computational 
methods using transcriptomic profiles can contribute to our under-
standing of tumor immunity and our ability to delineate prognostic 
and predictive markers of immunotherapy response. These methods 
provide valuable insights into immune response predictors such as 
gene expression signatures, estimates of tumor immune cell infiltra-
tion, immune repertoire profiles and microbiome features associated 
with immune response. To the best of our knowledge, there is no sys-
tematic pipeline to perform integrative RNA-seq analysis focused on 
tumor immunity and immunotherapy. In this tutorial and the accom-
panying online guide (https://liulab-dfci.github.io/RIMA/), we propose 
efficient, accurate and user-friendly practices for analyzing RNA-seq 
data, highlighting analyses related to tumor immunity and immu-
notherapy (Fig. 1 and Table 1). The GitBook website is continuously 
maintained and updated with immunotherapy features discovered 
in the latest studies. A companion immune-focused analysis pipeline 
(RNA-seq IMmune Analysis, RIMA) provides the ability to characterize 
tumor immunity from RNA-seq data, and its usage is demonstrated 
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(i.e., when samples cluster by batches instead of by biological condi-
tions), limma28 and Combat29 are commonly used to correct for these 
technical artefacts. Combat uses an empirical Bayes approach to elimi-
nate batch effects, which is critical to avoid over-correction when the 
batch size is small, whereas limma applies a linear model to correct 
for batch effects and is more efficient for datasets of more than four 
batches30. It is essential to mitigate batch effects in gene expression 
profiles for informative downstream analysis.

Differential expression and gene set enrichment
Differential expression analysis facilitates the discovery of genes and 
pathways whose representation differs in specific biological conditions. 
DESeq2, EdgeR and limma-voom31–33 are popular tools for differential 
expression analysis. DESeq2 fits a generalized linear model to estimate 
the coefficient and log fold change of genes between treatment and 
control conditions, whereas edgeR uses a negative binomial distribu-
tion model to achieve that same goal. Both tools apply Empirical Bayes 
shrinkage for estimating the expression dispersion when each condi-
tion has <20 replicates per condition34. limma-voom also fits a linear 
model and is more efficient for large sample sizes but less sensitive 
than DESeq2 and EdgeR. For calculating differential expression at the 
gene level, the ‘tximport’ R package35 is used to convert transcript-level 
abundance (TPM) to gene-level estimated counts before performing 
differential expression analysis.

Gene set enrichment analysis (GSEA)36 is usually conducted after 
differential expression analysis to detect gene expression patterns 
that affect pathways, molecular functions, cellular components and 
processes. Databases such as the Kyoto Encyclopedia of Genes and 
Genomes37 (KEGG), Gene Ontology38 (GO) and the Molecular Signa-
ture Database39 (MSigDB) are generally used for enrichment analysis. 
Results from differential expression analysis are used to rank genes 

according to metrics of choice (e.g., the difference in expression means, 
fold change, a P value from a t test or Simpson or Shannon diversity 
indices). GSEA then uses this ranked list of genes to calculate enrich-
ment scores for the pre-defined gene sets contained in databases such 
as KEGG, GO and MSigDB. Single-sample gene set enrichment analysis 
(ssGSEA)40 is an extension of GSEA that directly calculates enrich-
ment scores of user-specified pathways or gene signatures from the 
expression profile of each sample. The ssGSEA score of each sample 
on different pathways can then be combined and compared to identify 
associations with phenotypes.

Cell infiltration estimation
The TME consists of endothelial cells, immune cells, stromal cells and 
extracellular factors surrounding tumor cells. Estimating cellular com-
ponents is essential for correctly classifying TME phenotypes41 and 
untangling the mechanisms of tumor immune evasion42. There are two 
major approaches for estimating immune cell infiltration in the TME: 
deconvolution-based and marker-based approaches. Deconvolution-
based methods, such as TIMER43, quanTIseq44, EPIC45 and CIBERSORT46, 
consider a given gene expression profile as a linear combination of 
pre-defined immune gene signatures present at different ratios. A 
linear regression model is often applied to estimate the coefficients 
of genes, which are later used to infer immune cell abundances or frac-
tions. Marker-based approaches, such as xCell47 and MCP-counter48, 
quantify the signature enrichment score of a list of cell type–specific 
marker genes from gene expression profiles. ImmuneDeconv49 is an 
R package that integrates the above six algorithms to estimate the 
extent of infiltration of immune and stromal cells. In addition, EPIC 
and quanTIseq also assess uncharacterized cells defined as cancer 
cells. CIBERSORT absolute mode, EPIC and quanTIseq support inter-
comparison between sample groups and intra-comparison between 
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Fig. 1 | Flowchart of immune analysis of bulk RNA-seq data using RNA-seq  
IMmune Analysis (RIMA). RIMA is comprised of a preprocessing data 
module and seven downstream modules related to the tumor immune 
microenvironment. The preprocessing module includes read alignment, 
quality control, gene quantification and batch effect removal. Downstream 

modules include differential expression and gene set enrichment analysis, 
immunotherapy response prediction using known gene expression signatures, 
immune cell infiltration estimation, immune repertoire profiling, gene fusion 
identification, human leukocyte antigen (HLA) typing and microbiome analysis. 
DE, differential expression; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Table 1 | The most common computational tools and methods for RNA-seq immune analysis

Tasks Approach Tool References Notes

Read mapping Aligns spliced transcripts to the genome 
reference by using the suffix array 
method

STAR 16 Common alignment tool

Quality control Different methods for generating 
multiple quality control metrics

RSeQC 17 Common tool for alignment quality checks

Gene quantification

Pseudo aligner Salmon, Kallisto 25,26 Salmon supports fastq and bam inputs; 
Kallisto supports fastq

Iteration of expectation-maximization to 
estimate alignment length

RSEM 24 Relatively slow; quantifies isoforms

Counts mapping reads over exons HTSeq 23 Exon-level read count quantifications

Linear model to analyze RNA data-
integrated experiment

limma 33 Two-way ANOVA to avoid over-correction

Batch correction

Negative binomial regression model Combat 29 Empirical Bayes to avoid over-correction; 
better for small batches

Shrinkage estimation for dispersions and 
fold changes

DESeq2 31 –

Differential
Empirical Bayes methods EdgeR, limma-voom 28,32 limma-voom is efficient for large-scale data

Applies the Kolmogorov-Smirnov 
statistic to a gene list

ClusterProfile 36 Supports KEGG, GO and MSigDB enrichment

Gene set enrichment

Extension of GSEA, single-sample gene 
set enrichment

ssGSEA 40 –

De novo assembly of candidate reads 
from TCR/BCR genes

TRUST4 66 Faster and sensitive for longer assemblies; 
supports both bulk and single-cell RNA-seq 
data

Immune repertoire V-support vector regression CIBERSORT 8 Detects 22 immune cell types

Immune infiltration

Constrained least square regression

TIMER, TIMER2 43 Estimates 6 immune cell types; TIMER2 allows 
users to choose the most-related cancer 
types inferred from TCGA

quanTIseq 44 Estimates 10 immune cell types

Estimates the immune cell abundance 
by using ssGSEA from curated public 
datasets

xCell 47 Estimates 64 cell types, including lymphoid, 
stem, myeloid and stromal cells

A deconvolution-based method 
that uses constrained least square 
regression

EPIC 45 Estimates 6 immune cell types, cancer-
associated fibroblasts and endothelial cells

A marker-based method that uses 
curated transcriptomic markers

MCP-counter 48 Estimates 8 immune cell types, cancer-
associated fibroblasts and endothelial cells

Immune response Estimates T cell dysfunction and 
exclusion from expression data

TIDE 54 http://tide.dfci.harvard.edu/

MSI

Uses Pearson’s chi-squared test on the 
distribution of repeated microsatellite 
sequences

MSIsensor2, MSIsensor 57,59 MSIsensor2 supports tumor-only and tumor-
normal paired data; MSIsensor supports 
tumor-normal paired data

Uses the Z-score test to calculate single-
locus instability

mSINGS 58 Long running time; supports tumor-only data

HLA allele Alignment-based approach

arcasHLA 85 Supports tumor/normal paired RNA 
sequencing data

OptiType 87 Supports MHC class I RNA/DNA data

POLYSOLVER 88 Supports MHC class I DNA data and detects 
HLA mutation

Neoantigen Integrates neoantigen identification 
tools: NetMHC, SMMAlign and MHCflurry

pVACSeq 93 –

Gene fusion

Uses chimeric and discordant read 
alignments from STAR to predict fusion 
genes

STAR-fusion 81 Fast and efficient common fusion calling tool

Uses BLAST to calculate the similarity of 
fusion genes

pyPRADA 82 Detects homologous genes and filters those 
genes from the fusion-calling results

Microbiome

Expectation-maximization algorithm to 
classify microbial sequences

Centrifuge 106 Fast alignment and sensitive for short read 
exact matches

Lowest common ancestor algorithm to 
match to taxa in a reference database

Kraken 102 Fast, accurate and sensitive labeling of reads 
and quantification of species

Aligns the non-host reads to microbial 
genomes by using BWA-MEM aligner

PathSeq 105 Pathogen discovery

The tools shown in bold are integrated into the RIMA pipeline.

http://www.nature.com/NatProtocol
http://tide.dfci.harvard.edu/


Nature Protocols

Review article https://doi.org/10.1038/s41596-023-00841-8

cell types, whereas TIMER, xCell and MCP-counter support only 
inter-comparisons between sample groups within the same cell type. 
Depending on the specific gene signature used by each algorithm, dif-
ferent algorithms cover slightly different cell types and thus perform 
differently on specific immune or stromal cells50. A user may wish to 
select tools for particular immune cells and to evaluate the consistency 
of predictions stemming from different algorithms, the agreement of 
results with estimations from other modalities and/or the derivation 
of the marker genes used by each tool. Newer algorithms are being 
developed to improve predictions that use well-annotated single-cell 
RNA-seq datasets as reference and attempt to impute cell type–specific 
gene expression51,52.

Immunotherapy response prediction
Immunotherapy, especially ICB, has made excellent progress in treat-
ing advanced-stage cancer patients53. An increasing number of gene 
expression biomarkers have been used for predicting ICB response. 
These biomarkers include ICB-related gene signatures (PDCD1, CD274 
and CTLA4), interferon-gamma signaling signatures and MHC class I&II 
antigen presentation levels. For instance, Jiang et al.54 developed the 

TIDE algorithm to measure T cell dysfunction and exclusion from tumor 
expression data and to predict ICB outcomes. The T cell dysfunction 
score was derived by systematically identifying genes whose effects  
on survival are dependent on cytotoxic T cell infiltration levels as 
estimated from TCGA data. In contrast, the T cell exclusion score 
was calculated from the average expression of gene signatures for 
cancer-associated fibroblasts, myeloid-derived suppressor cells and M2 
tumor-associated macrophages. The algorithm has been integrated into 
the TIDE website (http://tide.dfci.harvard.edu/), which contains >1,000 
tumor RNA-seq profiles from samples obtained after ICB treatment 
across >20 cohorts to evaluate and compare different biomarkers. In 
addition to T cell dysfunction and exclusion, the TIDE website provides 
other metrics to infer the TME and T cell status (e.g., levels of cytotoxic 
T lymphocytes and other cell types known to restrict T cell infiltration6, 
an IFN-γ–related gene signature7 and an 18-gene T cell–inflamed expres-
sion signature developed by Merck55). The performance of applying 
these gene signatures for predicting the observed clinical outcomes is 
evaluated across all cohorts contained on the TIDE website.

Microsatellite instability (MSI) was identified as a predictive bio-
marker for cancer immunotherapy response in multiple cancer types56. 
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Fig. 2 | Running time of RIMA pipeline. a, Comparison of running time 
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module of RIMA. c, Running time (minutes) of cohort-level Snakemake tasks for 
each module. More detailed information about RIMA modules can be found at 
https://liulab-dfci.github.io/RIMA/.
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Several tools were developed to estimate MSI scores from RNA-seq 
data: for instance, MSIsensor57 predicts the MSI score from tumor-
normal paired profiles, whereas mSINGS58 accepts tumor-only inputs 
but is less sensitive than paired tumor-normal estimation. Recently, 
MSIsensor259 was developed to improve prediction accuracies, 
allowing tumor-only inputs.

Immune repertoire inference
V(D)J recombination is a genome rearrangement event affecting TCRs 
and BCRs during T and B cell maturation. The random joining of V, D and 
J genes and the indels and mutations introduced at the joining junc-
tions produce the highly variable complementarity-determining region 
3 (CDR3) on TCRs/BCRs. TCR/BCR CDR3 diversity allows T cells and  
B cells to recognize different external pathogens or tumor-associated 
antigens60,61 for immune cell activation. Upon antigen recognition 
and clonal expansion, B cells also undergo somatic hypermutation to 
improve antigen-binding affinity and isotype class switching to elicit 
different downstream immune signaling pathways. Emerging sequenc-
ing techniques such as TCR-seq and BCR-seq have been developed to 
profile the T and B cell repertoires62. MiXCR63 is a widely used algorithm 
to analyze TCR/BCR-seq data. It first aligns candidate reads to the refer-
ence germline sequences from the ImMunoGeneTics (IMGT), which inte-
grates knowledge of immunoglobulins, TCRs, major histocompatibility 
and other immune-related proteins. MiXCR then identifies the reads 
spanning the CDR3 region and assembles the overlapping reads into 
CDR3 sequences. However, TCR/BCR-seq assays are expensive and not 
always feasible to perform on small biopsy samples. Because TCR and 
BCR transcripts are also present in RNA-seq data, computational algo-
rithms have been designed to infer immune repertoires from RNA-seq 
data. TRUST is an algorithm that assembles TCR64 and BCR65 sequences 
from bulk RNA-seq. The latest version of the pipeline, TRUST466, sig-
nificantly improves assembly accuracy and computational efficiency 
over those of its predecessors and supports the analysis of single-cell 
RNA-seq data. TRUST4 directly conducts de novo assembly of candidate 
reads from TCR/BCR genes and then aligns those assembled contigs 
to the IMGT reference database67 to identify CDR3s. Both MiXCR and 
TRUST tools output the CDR3 sequence, the frequency of V/J genes and 
VJ gene pairs, BCR constant gene usage and the full-length VJ sequence.

TCR/BCR clonality and diversity are important TME characteristics 
associated with immunotherapy response68,69, which can be calculated 
from the normalized Shannon entropy of individual clonotypes derived 
from TCRs/BCRs. For TCRs, CDR3 sequences are directly used to rep-
resent the clonotypes. For BCRs, because highly similar CDR3s from 
somatic hypermutations belong to the same lineage, these sequences 
should be clustered first to represent a single clonotype. In addition to 
TCR/BCR clonality and diversity, the somatic hypermutation rate and 
isotype quantification of BCRs are also informative for B cell activation 
and TME status64,70. The somatic hypermutation rate can be measured 
by the variance within clustered CDR3 sequences or the dissimilarity 
between the V gene and the germline reference from the IMGT data-
base65. Ig isotype quantification is determined by the abundances of 
each isotype of the BCR heavy chain65.

Tumor mutation detection and characterization 
of the mutational landscape
Genome instability is a hallmark of cancer71, and tumor mutations con-
tinue to accumulate during tumor initiation, progression and metas-
tasis. The tumor mutation burden has been identified as an effective 
marker for predicting ICB response2,4. The standard approach for 
somatic mutation detection is the analysis of whole-exome or whole-
genome sequencing data from tumor-normal matched pairs. Compu-
tational algorithms are used to call mutations from the resulting data. 
For example, MuTect is based on a Bayesian classifier72, MuSE uses a 
Bayesian Markov model73, SomaticSniper74 uses a Bayesian comparison 
of genotype likelihoods and Varscan2 is based on a heuristic algorithm 

classifying somatic mutation status75. Among these approaches, Var-
scan2 can be applied to RNA-seq data with good coverage76,77, although 
the mutation calls are still expected to be noisier than those from DNA 
sequencing. After somatic mutation detection, VEP78 can be used to 
annotate mutations on genes, transcripts and regulatory regions.

In addition to point mutations, gene fusions are another type of 
genetic alteration arising in cancer cells and can act as cancer drivers79. 
There are two major ways to form gene fusions: (i) a genome structural 
rearrangement at the chromosome level, such as an insertion, deletion, 
or translocation; and (ii) chimeric RNAs generated through read-through 
splicing or trans-splicing, which can be detected from RNA-seq data80. 
STAR-Fusion81 is a popular algorithm with high speed and accuracy that 
leverages chimeric and discordant read alignments from STAR to predict 
splicing fusions from the chimeric alignment transcripts. pyPRADA82 
is another tool conducting supervised and unsupervised detection of 
fusion events from RNA sequences and helping to filter out homologous 
genes with high sequence similarity.

Neoantigen prediction
Neoantigens are highly expressed new peptides derived from tumor 
mutations that can bind to antibodies or T cell receptors71. These 
peptides are small polymers generated from protein degradation by 
proteasomes inside the cell and are then presented on the cell surface 
by MHCs. The HLA complex on chromosome 6 encodes most of the pro-
teins that make up the human MHCs. Thus, the HLAs are polymorphic 
and encode MHCs that have different propensities to present different 
peptides. Two major classes of human MHC, class I and class II, are 
involved in antigen presentation. MHC class I molecules are generally 
expressed on normal cells and present internal degraded proteins, 
whereas MHC class II molecules are normally expressed on professional 
antigen-presenting cells and present processed external antigens83,84. 
Many algorithms have been developed to accurately call HLA alleles 
from DNA and/or RNA sequencing data. Current alignment-based HLA 
typing methods can predict both class I and II HLA alleles against ref-
erence sequences from the IMGT database. For example, arcasHLA85 
and seq2HLA86 are designed to predict both MHC class I and class II 
alleles from RNA-seq data. OptiType87 can be applied to RNA-seq, whole-
exome and whole-genome sequencing data for the identification of 
MHC class I alleles. POLYSOLVER88 is another HLA-typing tool that 
predicts class I alleles from whole-exome sequencing data and detects 
mutations in HLA genes.

Neoantigen recognition is useful for the development of cancer 
neoantigen vaccines and helps characterize the essential drivers of  
T cell activity89. In addition, a fraction of predicted neoantigens has 
been confirmed to be immunogenic90, and the neoantigen load, which 
can be calculated as the total number of predicted neoantigens, is 
associated with ICB response83,91. Different HLA alleles present differ-
ent neoantigens on the cell surface, which contribute to neoantigen 
recognition by the immune system. Many computational tools have 
been developed to help identify potential neoantigens by predict-
ing the binding affinity of peptides to specific HLAs. Usually, tumor 
mutated peptides with stronger MHC binding affinity (half maximal 
inhibitory concentration < 500 nm)92 compared to normal peptides 
are considered neoantigens. The pVAC-Seq93 is a robust neoantigen 
prediction pipeline integrating somatic mutations, HLA alleles and 
common MHC binding affinity prediction tools, such as NetMHC94, 
MHCflurry95 and SMMalign96.

Microbiota classification and quantification
Microbiota and their interaction with host tissues contribute to the 
human innate and adaptive immune system and influence a host’s sus-
ceptibility to cancer97,98. For instance, modulating gut microbial com-
ponents has been shown to influence ICB response in melanoma99,100. 
In addition, tumor microbial profiles are also important for virus study 
and are cancer type specific13,101. Traditional 16S rRNA sequencing is 
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commonly used to determine microbial phylogeny and taxonomy from 
the hypervariable regions of 16S ribosomal RNA. High-throughput 
sequencing, generating microbial DNA/RNA sequences, is also widely 
used for microbiome classification. Kraken102,103 is a highly used ultrafast 
tool for metagenomic sequence classification from DNA sequences. 
RNA-seq has also been used for virus detection, including human pap-
illomavirus, hepatitis B and Epstein-Barr virus104. PathSeq105 was first 
developed to detect microbes by using both transcriptome and whole-
exome data, which aligns non-host reads to predefined microbial organ-
isms. Centrifuge106 significantly speeds up the classification process 
with comparable accuracy to Kraken and is more sensitive for short, 
exact matches. Thus, Centrifuge better captures signals from RNA-seq 
reads spanning exons within the human host and viral genomes.

RIMA pipeline implementation
We developed a comprehensive bulk RNA-seq analysis pipeline named 
‘RIMA’ to characterize the TME on the basis of RNA-seq data (https://
liulab-dfci.github.io/RIMA/)21,107,108. RIMA distinguishes itself from other 
RNA-seq analysis pipelines by integrating a basic preprocessing module 
with seven downstream modules focused primarily on immune-related 
analyses. The preprocessing module includes read alignment, quality 
control, gene expression quantification and an evaluation of potential 
batch effects. Downstream modules include differential expression 
analysis, immune infiltration estimation, immune repertoire profiling, 
fusion identification, HLA typing, immunotherapy response predic-
tion and microbiome analysis. RIMA performs both individual- and 
cohort-level analyses. For individual-level analysis, each sample’s raw 
fastq reads or alignment BAMs are used to quantify expression, profile 
the immune repertoire, identify gene fusions and determine the HLA 
alleles, MSI score and microbiome abundance. The cohort-level analysis 
applies customized scripts to format individual-level analysis outputs 
and combine them for downstream comparisons between customized 
clinical phenotypes. For example, the merged gene expression matrix 
can be used to identify differentially expressed genes, estimate immune 
infiltration and calculate gene expression signature scores for immune 
response prediction. Individual results from TRUST4 are combined for 
downstream comparison analysis of TCR/BCR clonality and diversity. 
The Python-based Snakemake pipeline management system is used to 
support the running flow between the different bioinformatics tools 
applied in the preprocessing module and downstream analysis modules 
of RIMA, and R Bioconductor packages are used for statistical analysis 
and result visualization. Our Gitbook tutorial demos the RIMA pipeline 
by using 12 glioblastoma samples109 on a Google cloud n2-standard-48 
machine equipped with 48 CPUs and 198 GB of memory. The running 
times of Snakemake tasks at both individual and cohort levels are sum-
marized in Fig. 2b,c. The RIMA pipeline is useful for large-scale data 
processing and transcriptomic characterization of the TME, thus offer-
ing insights into cancer genomics and immuno-oncology.

RIMA is one uniform pipeline that integrates key immune- 
associated features, which allow users to study the TME from dif-
ferent perspectives. The differential analysis module helps identify 
potential prognostic biomarkers. The immune cell infiltration and 
the immune repertoire module uncover the extent of cancer hetero-
geneity. In combination with whole-exome sequencing data, the neo-
antigen expression module helps novel neoantigen discovery and 
vaccine designs. Within the Cancer Immune Monitoring and Analysis 
Centers-Cancer Immunologic Data Commons network as part of the 
National Cancer Institute cancer moonshot program, RIMA was built 
to support the consistent analysis of data from multiple studies and 
perform flexible cohort-level analysis for the comparison of different 
clinical phenotypes. Our pipeline has been used to study the effect 
of immunotherapy drugs on novel ICB targets and chimeric antigen 
receptor T therapy21,107,108,110,111.

Our pipeline has some limitations: first, neoantigens derived from 
post-translational modifications and gene fusions are important for  

T cell response112,113, but these tools are currently not included in RIMA. 
Several tools were developed to include neoantigens derived from 
these and other sources of variation114. In the future, we will expand 
RIMA to include gene fusion analysis to identify some of these neoan-
tigens. Second, RIMA currently provides several gene signatures (T cell 
dysfunction and exclusion, INF-γ and tumor-infiltrating lymphocytes) 
that are associated with immunotherapy response. However, prognos-
tic gene expression signatures are still being developed and are often 
cancer type specific. Examples include hematopoietic stem cell and 
granulocyte-macrophage progenitor genes found in acute myeloid 
leukemia115 and genes involved in the mitogen-activated protein kinases 
kinase activity in triple-negative breast cancer116. To support custom-
ized gene signature evaluation, RIMA provides text results of expres-
sion matrices to support customized analysis depending on diverse 
cancer characteristics. The text expression output of RIMA will allow 
users to extract potential biomarker genes and explore expression 
differences in these genes between responders and non-responders. 
We will also continue to collect additional cancer-specific gene signa-
tures and will update the pipeline and online guide as discoveries are 
made in the field.

Outlook
The advent and promise of successful immunotherapies has galva-
nized the cancer research community and has led to exciting insights 
into tumor immunity. However, it is difficult to disentangle the com-
plex dynamics of cancer cells, the tumor microenvironment and the 
immune system. The inherent inter- and intra-tumor heterogeneity 
of tumors impedes the development of efficient clinical biomarkers, 
the discovery of novel immunotherapy targets and the development 
of new cancer drugs. The development of single-cell sequencing tech-
niques, such as single-cell RNA-seq and single-cell sequencing assay for 
transposase-accessible chromatin, provides high-dimensional resolu-
tion data on the immune cell population and enables the detection of 
differences between individual cells and groups thereof117–119. Multi-
omics approaches integrating genetics, transcriptomics, epigenet-
ics and metagenomics data could also enhance our understanding of 
immune and tumor cell interactions120–123. RIMA is our immune-focused 
pipeline specifically developed for bulk RNA-seq data. It provides a 
consistent processing pipeline with which to extract meaning from 
immunotherapy RNA-seq datasets. As additional datasets, biological 
insights and assay modalities become available, we will continue to 
improve RIMA’s analysis features and integrate its results with other 
data types. We also plan to update our online tutorial with the latest 
cancer immunotherapy knowledge and discoveries. We expect that 
our Gitbook tutorial will be a valuable resource for cancer immunology 
studies in the future.

Conclusion
The past decade has seen cancer immunotherapy transform cancer 
treatment. At the same time, RNA-seq has become a mature and cost-
effective profiling technique and is increasingly used in cancer immu-
nology and immunotherapy studies. RNA-seq is versatile, allowing 
scientists to investigate many aspects of tumor immunity such as iden-
tifying treatment response gene signatures, differentially expressed 
pathways, tumor immune cell infiltration, TCR/BCR repertoire features 
and microbiota abundance. Many computational methods have been 
developed to analyze RNA-seq data and characterize different aspects 
of tumor immunity. We anticipate that integrative and immune-specific 
computational analysis of tumor RNA-seq data will help advance cancer 
immunology and immuno-oncology research. Our online tutorial and 
companion RIMA pipeline will serve as a comprehensive resource to 
capture the latest progress in the field and provide insights into tumor 
immunity and immunotherapy response. We anticipate that ongo-
ing research will lead to the discovery of progressively more immune 
markers and novel immune targets.
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Data availability
The dataset used for testing the pipeline running time in Fig. 2 and in 
the RIMA online tutorial was obtained from Sequence Read Archive 
PRJNA482620 via ref. 109.

Code availability
The RIMA source code is available at https://github.com/liulab-dfci/
RIMA_pipeline and as Supplementary Software 1. The online tutorial 
is available at https://liulab-dfci.github.io/RIMA/.
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