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Significance

Here, we present a large cohort 
study of peripheral blood TCR  
(T cell receptor) clonotype 
diversity in breast cancer patients 
diagnosed with either DCIS 
(ductal carcinoma in situ) or  
de novo stage IV disease at 
younger (<45) and older (≥45) 
ages. Peripheral blood TCR 
clonotype diversity is associated 
with age and intratumor immune 
status and might be linked to 
probability of disease 
progression.
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Immune escape is a prerequisite for tumor growth. We previously described a decline 
in intratumor activated cytotoxic T cells and T cell receptor (TCR) clonotype diversity 
in invasive breast carcinomas compared to ductal carcinoma in situ (DCIS), implying 
a central role of decreasing T cell responses in tumor progression. To determine poten-
tial associations between peripheral immunity and breast tumor progression, here, we 
assessed the peripheral blood TCR clonotype of 485 breast cancer patients diagnosed 
with either DCIS or de novo stage IV disease at younger (<45) or older (≥45) age. 
TCR clonotype diversity was significantly lower in older compared to younger breast 
cancer patients regardless of tumor stage at diagnosis. In the younger age group, TCR- α 
 clonotype diversity was lower in patients diagnosed with de novo stage IV breast cancer 
compared to those diagnosed with DCIS. In the older age group, DCIS patients with 
higher TCR- α clonotype diversity were more likely to have a recurrence compared to 
those with lower diversity. Whole blood transcriptome profiles were distinct depend-
ing on the TCR- α Chao1 diversity score. There were more CD8+ T cells and a more 
active immune environment in DCIS tumors of young patients with higher peripheral 
blood TCR- α Chao1 diversity than in those with lower diversity. These results provide 
insights into the role that host immunity plays in breast cancer development across 
different age groups.

breast cancer | TCR clonotype | DCIS | diversity

The immune landscape changes dynamically as breast cancer evolves from ductal hyper­
plasia to ductal carcinoma in situ (DCIS) and further to invasive and then metastatic 
disease (1). We previously described gradually increasing immunosuppression during 
breast tumor progression and identified the in situ to invasive carcinoma transition as a 
key step in immune escape, characterized by an increase of regulatory T cells and a decline 
in activated granzyme B positive CD8+ T cells and T cell receptor (TCR) clonotype 
diversity (2, 3). The tumor immune microenvironment is also impacted by tumor subtype 
[estrogen receptor–positive (ER–positive), HER2- positive, triple- negative] and histological 
grade (high or low), with HER2- positive and triple- negative breast cancer (TNBC) having 
a higher frequency of tumor- infiltrating lymphocytes (TILs) compared to estrogen recep­
tor–positive (ER–positive) tumors. Similarly, high- grade tumors have more TILs than 
low- grade tumors, and this pattern is already evident at the DCIS stage (2). Differences 
in TILs correlate with responses to immune checkpoint inhibitor (ICI) therapy, and thus, 
ICI currently is only approved for a subset of patients with TNBC (4). However, there is 
increasing evidence that the efficacy of ICI is determined not only by the tumor immune 
microenvironment but also by characteristics of the host (i.e., patient), implying a link 
between peripheral immunity and anti- tumor immune responses (5).

Peripheral blood TCR clonotype diversity is a quantitative assessment of host immune 
status, which has been shown to be associated with the clinical outcome and the efficacy 
of immunotherapy in certain cancer types (6, 7). Besides pathogen exposure, TCR clono­
type diversity is also strongly impacted by age, with decreasing richness (number of different 
TCR clonotypes) and increasing clonality (relative abundance of clonotypes) observed in 
older individuals (8, 9). Aging is also associated with an increase in chronic inflammatory 
conditions and immune dysfunction (10), which may diminish anti- tumor immune 
responses and favor tumor initiation, progression, and disease recurrence. These data suggest 
that peripheral blood TCR clonotype diversity might potentially be a clinically useful 
biomarker for predicting cancer risk and progression as well as treatment outcomes.

Here, we assessed peripheral blood TCR diversity in a large cohort of breast cancer 
patients of different ages diagnosed either with DCIS (pre- invasive) or with de novo stage 
IV (distant metastatic) disease to explore associations between TCR clonotype diversity 
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and breast cancer progression. We also performed RNA- seq on 
whole blood and DCIS tumor tissues in a subset of cases to analyze 
how the transcriptome of peripheral blood and tumor tissue relates 
to TCR diversity.

Results

Peripheral TCR Clonotype Diversity in Breast Cancer Patients. 
To assess peripheral blood TCR clonotype diversity, we extracted 
RNA from the peripheral blood of 485 breast cancer patients 
spanning a wide age distribution (mean age 48, range 21 to 83 y 
old), diagnosed with either DCIS (n = 176) or de novo stage 
IV disease (n = 309), and performed TCR- α and TCR- β chain 
sequencing (Fig. 1A and Dataset S1). We chose to profile patients 
with DCIS and de novo stage IV disease because they represent the 
earliest and the most advanced stages of breast cancer. In addition, 
comparing these two conditions facilitates the identification of 
tumor stage- related differences independent of therapeutic impact, 
since these patients did not have any treatment prior to diagnosis. 
Blood was collected at the time of diagnosis (baseline) from all 
patients with de novo stage IV disease (n = 309) and most (151 out 
of 176) DCIS cases. For 25 DCIS patients, blood was collected 1 y 
after diagnosis and following surgical resection of DCIS. For six 
DCIS cases, we profiled matched baseline and 1- y blood samples.

TCR diversity was calculated using multiple different metrics 
(Methods) assessing both the overall size of the TCR clonotype 
repertoire as well as the relative abundance of each clonotype. The 
richness measure is simply counting the number of unique TCR 
species in a sample, while the Chao1 index is a nonparametric 
estimate of the total unobserved richness. Shannon index, as well 
as Shannon and Simpson clonality, are hybrid indices jointly 
accounting for both the number of species and their relative abun­
dance, via different mathematical formulations (11). All these 
metrics capture different biological aspects of the diversity of the 
TCR clonotype distribution.

The six matched blood samples from DCIS patients showed no 
statistically significant differences in any of the six diversity indices 
computed on both TCR- α and TCR- β chains between the base­
line and 1- y time points (SI Appendix, Fig. S1A). This suggests 
that surgical resection of DCIS may not have a lasting impact on 
TCR clonotype diversity, although the sample size is very small. 
We excluded these six 1- y samples and only used the matched 
baseline samples for further analyses.

We first analyzed associations between TCR diversity and age. 
Increasing age was associated with decreasing Chao1 diversity 
(unobserved total richness) and increasing clonality (both Shannon 
and Simpson), for both DCIS and de novo stage IV patients and 
both TCR- α and TCR- β chains, with TCR- α diversity more 
highly correlated with age than TCR- β (Fig. 1B and SI Appendix, 
Fig. S1 B and C and Dataset S2). Due to the significant impact 
of age on TCR clonotypes and the clinical and molecular differ­
ences of breast tumors between younger and older patients in part 
due to menopause (12), we aimed to evaluate TCR diversity sep­
arately in these two groups. To this end, we used an age cutoff of 
45 y old to separate patients into younger (<45) and older (≥45) 
age groups. The chosen cutoff is biologically relevant because it 
separates the patients into likely premenopausal (mean age in 
younger DCIS 38.0 ± 3.86 and stage IV 36.7 ± 4.74) and likely 
postmenopausal (mean age in older DCIS 55.8 ± 7.73 and stage 
IV 58.2 ± 8.38) groups. In addition, the age distribution of all the 
patients in our cohort is seemingly binomial (Fig. 1C).

Next, we compared TCR diversity among patients diagnosed 
with either DCIS or de novo stage IV disease to determine stage 
and age- specific differences. We focused primarily on the Chao1 

index, which we considered to be a more robust assessment of 
TCR signal due to its overall association with age. Younger DCIS 
patients exhibited significantly higher TCR- α Chao1 diversity 
compared to either younger de novo stage IV patients or older 
patients with DCIS (Fig. 1D and Dataset S2). In contrast, TCR- α 
diversity was not significantly different between older DCIS 
patients and older de novo Stage IV patients (Fig. 1D and 
Dataset S2). No significant differences were observed when com­
paring categories using the TCR- β repertoire or other indices than 
Chao1 (Fig. 1D, SI Appendix, Fig. S1 D and E, and Dataset S2).

Next, we assessed potential associations between TCR diversity 
and clinical features. We found that TCR- α Chao1 diversity was 
significantly higher in older DCIS patients who experienced a 
subsequent cancer diagnosis (ipsi-  or contralateral breast cancer or 
chest wall or distant recurrence, see Dataset S1) compared to those 
who did not (Fig. 1E and Dataset S2). In younger DCIS patients 
in contrast, recurrence was not associated with differences in TCR 
diversity, potentially due to the high frequency of bilateral mas­
tectomies in these cases (Fig. 1E, SI Appendix, Fig. S2 A and B,  
and Datasets S1 and S2). We also evaluated whether TCR diversity 
is associated with overall survival in de novo stage IV patients by 
multivariate Cox regression and found that none of the diversity 
indices was significantly associated with survival in neither younger 
nor older patients (Dataset S2). Dataset S2 also contains the mul­
tiple testing corrected P- values across the different indices evalu­
ated and tests performed.

Overall, we report that TCR- α Chao1 diversity is associated 
with age in patients with both DCIS and de novo stage IV disease 
and with tumor stage at diagnosis in younger women, as well as 
with the risk of subsequent cancer diagnosis in older patients with 
DCIS.

Unique Peripheral T Cell CDR3α Sequences among Patients. 
We next evaluated the frequencies of CDR3α sequences part 
of each patient’s clonotype to further explore the association 
between TCR clonotype diversity and patient groups or clinical 
outcomes. The frequency composition of the TCR clonotype, 
as assessed by the relative frequency of CDR3α sequences, was 
variable across patients (Fig. 2A and SI Appendix, Fig. S3A). The 
ratio of unique CDR3α sequences in individual patients (number 
of unique sequences divided by the total number of sequences 
in a single patient) was substantially lower in the older de novo 
stage IV group than in the other groups (Fig. 2B). As CDR3α 
sequences similar at the amino acid level may potentially recognize 
the same antigens, we clustered all CDR3α sequences from all 
patients using the Geometric Isometry- based TCR AligNment 
Algorithm (GIANA) tool (13) (Datasets S3 and S4). The younger 
age DCIS patients had significantly more CDR3α clusters per 
patient than stage IV cases (SI  Appendix, Fig.  S3B), implying 
higher richness of T cells potentially targeting different antigens 
in DCIS compared to stage IV patients. This is consistent with 
the observed differences in TCR- α Chao1 diversity (Fig. 1D). In 
contrast, in the older cohort, CDR3α sequences from both DCIS 
and stage IV patients clustered into similar numbers of clusters 
(SI Appendix, Fig. S3B).

Considering that TCR richness was slightly higher in younger 
DCIS patients than younger de novo stage IV patients and was also 
associated with recurrence in older DCIS patients, we anticipated 
that the abundance of unique CDR3α sequences in DCIS cases 
may be relevant to DCIS recurrence. To this end, we compared the 
numbers of total CDR3α clusters in each of the four patient groups 
(younger/older and DCIS/de novo stage IV) and the overlap among 
them (SI Appendix, Fig. S3C). We investigated whether the num­
bers of CDR3α clusters unique in each case is different in DCIS D
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patients with or without recurrence. The younger age group DCIS 
patients without recurrence had relatively more unique CDR3α 
clusters than those with recurrence [10.89 (871/80) per patients 
without recurrence compared to 7.41 (126/17) per patients with 
recurrence] while both the older age group DCIS patients with or 

without recurrence had a similar number of unique CDR3α clusters 
[5.32 (266/50) per patients without recurrence compared to 5.43 
(123/23) patients with recurrence] (SI Appendix, Fig. S3 C and D). 
We further explored whether the categories of the predicted anti­
gens recognized by these unique CDR3α clusters might be different 

Fig. 1. Peripheral blood TCR diversity and patient age, tumor stage, and clinical outcome. (A) Schematic outline of the study. (B) Plot depicting correlation between 
peripheral blood TCR α-  (Left) and β-  (Right) chain Chao1 diversity with age in patients diagnosed with DCIS and de novo stage IV disease. Correlation is given by 
Pearson’s R. (C) Age distribution of DCIS and de novo Stage IV patients in the cohort. The red dashed line represents the age cutoff used to classify patients into younger  
(<45 y old) and older (≥45 y old) groups. (D) Graph showing differences in peripheral blood TCR α-  (Left) and β-  (Right) chain Chao1 diversity between patients diagnosed 
with DCIS and de novo stage IV disease in younger and older age groups using FDR- adjusted Wilcoxon rank sum test. (E) Dot plot illustrating differences in peripheral 
blood TCR α-  (Left) and β-  (Right) chain Chao1 diversity in DCIS patients with or without recurrence in younger and older age groups using the Wilcoxon rank sum test.
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depending on DCIS recurrence status. The antigen of CDR3α 
sequences predicted by a manually curated catalogue of pathology-  
associated T cell receptor sequences (McPAS- TCR) (14) exhibited 
differences in the relative frequencies of the clusters between younger 
DCIS patients with and without recurrence (SI Appendix, Fig. S3E 
and Dataset S5). While these associations with specific CDR3α 
clusters might potentially be related to clinical outcomes especially 
in younger DCIS patients, further analysis and experimental vali­
dation would be required to ensure the integrity and accuracy of 
these predictions. Overall, the CDR3 sequences show substantial 
variability across individuals, patient groups, and patients with dif­
ferent clinical outcomes, with a high number of sequences in the 
younger DCIS patients.

Peripheral Blood TCR Diversity and Peripheral Blood Transcrip­
tomes. We next investigated whether differences in peripheral 
blood TCR diversity reflect differences in peripheral blood trans­
criptomes. We performed bulk RNA- seq of peripheral blood in 
100 patients, 25 from each of the four age/tumor stage groups (93 
samples passed QC; Dataset S6). Due to the observed associations 
between the TCR- α Chao1 index and age and stage at diagnosis, we 
assessed associations between TCR- α Chao1 index and peripheral 
blood transcriptomes. All patients were divided into Chao1- 
high and - low groups based on the median score of the TCR- α 
Chao1 index of 93 samples (Dataset S6). Principal component 
and hierarchical clustering analysis showed superior separation of 
RNA- seq samples based on the TCR- α Chao1 index of diversity 
than based on tumor stage or patient age demonstrating that the 
peripheral blood TCR diversity has a strong association with gene 
expression patterns. (Fig. 3 A and B).

To explore the potential functional relevance of these tran­
scriptomic differences, we performed GSEA (geneset enrichment 
analysis) C2 core pathway analysis on the different patient groups 
(younger and older, DCIS and de novo stage IV, and Chao1-  
high and Chao1- low). Signatures related to innate immu nity 
(REACTOME_NEUTROPHIL_DEGRANULATION and 
REACTOME_INNATE_IMMUNE_SYSTEM) were enriched 
in de novo stage IV patient samples compared to DCIS (SI Appendix, 

Fig. S4A). Terms related to general cellular functions, including 
translation, transcription, mitochondrial function, and cell cycle 
were enriched in younger, DCIS, and Chao1 high groups.

We next separated all samples into six clusters by hierarchical 
clustering (Methods) for further characterization of transcriptomes 
and cellular composition (Fig. 3C and SI Appendix, Fig. S4B). The 
distribution of samples with high and low Chao1 diversity was 
significantly different among clusters (Fig. 3D). GSEA Hallmark 
analysis revealed that signatures related to inflammatory response (e.g., 
INTERFERON_GAMMA_RESPONSE and INFLAMMATORY_   
RESPONSE) were significantly enriched in cluster 2, which has 
a high proportion of patients with a high Chao1 index. On the 
other hand, several signatures related to proliferation (e.g., MYC_
TARGETS and G2M_CHECKPOINT) and metabolic features 
(e.g., OXIDATIVE_PHOSPHORYLATION and UNFOLDED_
PROTEIN_RESPONSE) were enriched in clusters 3 and 6 imply­
ing higher proliferation (Fig. 3E). To determine to what degree the 
observed differences in gene expression profiles might be due to dif­
ferences in cells composing each cluster, we performed cell type and 
gene expression deconvolution using BayesPrism (16) (Dataset S6). 
We observed high heterogeneity in the predicted ratios of various 
immune cell populations among clusters (Fig. 3F and SI Appendix, 
Fig. S4C). However, potential contamination with red blood cells 
and platelets is likely, as the fraction of inferred T and B cells, den­
dritic cells, monocytes, and NK cells are overall small. For example, 
samples in cluster 6 are almost entirely made up of erythrocytes 
(SI Appendix, Fig. S4D). The ratio of monocytes was the highest in 
cluster 2 compared to the other clusters (SI Appendix, Fig. S4C), 
which may explain the strong inflammatory signature characterizing 
this cluster (Fig. 3E). Overall, these results suggest that the periph­
eral blood TCR diversity reflects global transcriptional differences 
defined by a combination of cellular composition and functional 
activity.

Peripheral TCR Diversity and DCIS Immune Microenvironment. 
Last, we investigated potential associations between peripheral blood 
TCR diversity and DCIS tumor transcriptomes by performing 
RNA- seq on formalin- fixed paraffin- embedded (FFPE) tumor  

Fig. 2. CDR3 sequences of peripheral blood T cells and patient age or tumor stage. (A) The abundance of CDR3α sequences in the individual patients. (B) Graph 
depicting the number of CDR3α sequences which are unique or shared by two or more patients in each group, using one- way ANOVA with Tukey’s test.
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Fig. 3. Peripheral blood TCR diversity and total blood transcriptomes. (A) Principal component analysis plots of peripheral blood RNA- seq samples (n = 93) 
colored based on age (Left; younger and older), tumor stage (Middle; DCIS and stage IV), and peripheral blood TCR α- chain Chao1 index (Right; Chao1- high and 
- low), using Welch’s t- test. (B) Heatmap depicting unsupervised clustering of samples based on the top 500 differentially expressed genes. (C) PCA plots of all 
samples together (Left) or subdivided by age and stage (Right) colored based on hierarchical clustering analysis. (D) Peripheral blood TCR α- chain Chao1 index 
of the different RNA- seq clusters (Left), using one- way ANOVA. Ratio of samples according to age (Top), stage (Middle), and peripheral blood TCR α- chain Chao1 
index (Bottom) in each RNA- seq cluster, using the Chi- squared test. (E) GSEA Hallmark analysis of each RNA- seq cluster. All enriched pathways (adjusted P- value 
≤ 0.05) are indicated. (F) Plots depicting results of digital immune cytometry analysis using BayesPrism. The ratio of the indicated immune cell types to all cells 
was estimated based on the Azimuth PBMC celltype.l1 (15). Samples are colored based on their peripheral blood TCR Chao1 index.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
1.

17
4.

10
8.

30
 o

n 
N

ov
em

be
r 

28
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

71
.1

74
.1

08
.3

0.



6 of 10   https://doi.org/10.1073/pnas.2316763120 pnas.org

specimens of 18 younger DCIS cases (Dataset S7). We focused 
on DCIS to avoid organ site of metastasis- related differences in de 
novo stage 4 patients. In these samples, the peripheral blood TCR- α 
Chao1 index did not show significant association with tumor grade 
(SI Appendix, Fig. S5A) nor seem to impact global DCIS tumor 
transcriptomes (Fig. 4A and SI Appendix, Fig. S5B), although the 
sample size is too small for conclusive observations. Comparison 
of transcriptomes of DCIS from patients with a high and low 
peripheral blood TCR- α Chao1 index revealed 11 differentially 
expressed genes (DEGs) (Fig.  4 B and C). FGD1, encoding a 
protein required for invadopodia biogenesis and extracellular matrix 
degradation (17), had consistently high expression in tumors from 
patients with low peripheral blood TCR- α Chao1 index, while 
PNPLA8 (phospholipase A2) and DDX3X (DEAD- box RNA 
helicase) were highly expressed in cases with a high peripheral 
blood TCR- α index. Both PNPLA8 and DDX3X play a role 
in inflammation (18, 19) potentially implying an inflammatory 
microenvironment in DCIS of patients with high peripheral blood 
TCR- α Chao1 diversity. In line with this, GSEA pathway (C2 

core pathway) analysis demonstrated that DCIS from patients 
with high peripheral blood TCR- α Chao1 index were enriched in 
pathways related to the adaptive immune system and TCR signaling 
(Fig.  4D). In contrast, DCIS from cases with a low peripheral 
blood TCR- α Chao1 index displayed enriched pathways related 
to neuronal system and ECM- related pathways, as represented 
by high expression of FGD1, HEY1, and BMPR1B (mediators of 
these pathways) in these tumors (Fig. 4 B–D). Consistently, GSEA 
hallmark analysis demonstrated enrichment for TNFA and WNT- 
BETA CATENIN signaling as the most significantly enriched 
pathways in DCIS from patients with high and low peripheral 
blood TCR- α Chao1 diversity, respectively (SI Appendix, Fig. S5C).

To characterize the DCIS immune microenvironment in more 
detail, we performed BayesPrism cellular decomposition analysis 
using the breast tumor immune microenvironment as reference 
(16). Immune cell composition was overall very similar between 
tumors from DCIS patients with a high and low peripheral TCR- α 
Chao1 index with the exception of some T cell subsets (e.g., CD8 
IFNG), which showed a higher ratio in tumors of patients with 

Fig. 4. Peripheral blood TCR diversity and DCIS immune microenvironment in younger patients. (A) Principal component analysis of DCIS tumor transcriptomes 
(n = 18). Samples are colored based on peripheral blood TCR α- chain Chao1 index (Chao1- high or - low). (B and C) DEG analysis of tumor transcriptomes between 
peripheral blood TCR α- chain Chao1 index- high and - low patients. (B) Volcano plot depicting DEGs (adjusted P- value ≤ 0.05; orange, DEGs in Chao1- high cases; 
blue, DEGs in Chao1- low cases). (C) Heatmap depicting the expression of significant DEGs in individual cases. (D) GSEA C2 pathway analysis of tumors between 
peripheral blood TCR α- chain Chao1 index- high and low patients. NES, Normalized enrichment score. (E) Representative images of immunostaining for CD8 and 
the α- SMA myoepithelial cell marker. (F) Plot depicting correlation between CD8+ cell accumulation and peripheral blood TCR α- chain Chao1 index, using Pearson’s 
R. (G) Plot depicting correlation between CD8 immunofluorescence score and CD8A mRNA in RNA- seq data, using Pearson’s R. (H) CD8 immunofluorescence 
score in DCIS tumors with different grade, using one- way ANOVA with Tukey’s test.D
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high compared to those with low peripheral blood TCR- α Chao1 
diversity (SI Appendix, Fig. S5 D and E). To experimentally vali­
date these predictions, we performed immunofluorescence for 
CD8 and found high frequency of CD8+ T cells around ducts in 
DCIS from patients with high peripheral blood TCR- α Chao1 
diversity (Fig. 4E). The CD8 staining score positively correlated 
with peripheral blood TCR- α Chao1 diversity (Fig. 4F). The CD8 
staining score also significantly correlated with CD8 mRNA levels 
in our tumor RNA- seq data, suggesting that the enrichment of 
CD8+ T cell- related pathways in tumor RNA- seq of peripheral 
blood TCR- α Chao1- high patients is likely due to the higher 
abundance of CD8+ T cells in these DCIS (Fig. 4G). The CD8 
staining score also showed an increasing trend with increasing 
DCIS grade, although there were very few low- grade cases 
(Fig. 4H).

These results highlight the association between peripheral blood 
TCR- α Chao1 diversity and the DCIS immune microenviron­
ment and imply that high CD8+ T cell content in pre- invasive 
tumors might be linked to more diverse host immunity.

Discussion

In this study, we describe associations between peripheral blood 
TCR clonotype diversity and clinico- pathologic features of breast 
cancer in defined age groups of patients diagnosed with DCIS or 
de novo stage IV disease. We confirm previous findings of TCR 
diversity decreasing with age and show that this is independent 
of stage of breast cancer at diagnosis. In the younger age group, 
estimated unobserved total richness of the alpha chain, as assessed 
by Chao1, is significantly higher in patients diagnosed with DCIS 
vs. de novo stage IV disease and correlates with intratumoral CD8+ 
T cell accumulation in DCIS. In older DCIS patients, higher 
peripheral blood TCR diversity is associated with a higher risk of 
a subsequent cancer diagnosis (breast cancer in ipsi-  or contralat­
eral breast and distant site combined).

Aging is strongly associated with cancer initiation and progres­
sion (20), with 62 being the median age of breast cancer diagnosis 
in the United States (SEER 2012 to 2016 data). While aging is 
widely thought to contribute to increased cancer risk due to 
time- dependent mutation accumulation (21–23), key facets of 
anti- tumor immune function also decline with age (24). The rel­
ative frequencies of naïve T and B cell populations decrease with 
age with a concomitant increase in memory and exhausted T and 
B cells and impaired cytokine production by CD4+ and CD8+ T 
cells, all of which have the potential to affect anti- tumor immune 
responses (24–26). Peripheral blood TCR clonotype diversity is a 
quantitative measure of host immune status that may better reflect 
biological than chronological age. Peripheral blood TCR richness 
expands at an early post- natal stage and decreases throughout an 
individual’s lifetime, while T cell clonal expansion in older indi­
viduals leads to increased peripheral TCR clonality (5). Our data 
showing decreasing diversity and increasing clonality with age are 
in line with these prior findings and show that this also occurs 
both in patients diagnosed with DCIS and de novo stage IV 
disease.

Peripheral host immune status, defined largely by life- long 
pathogen exposure, has been proposed to influence anti- tumor 
immunity through a variety of mechanisms. Activation of toll- like 
receptor 3, an innate immune signaling pathway that can be acti­
vated by microbial infection, has been shown to mediate 
cross- priming of CD8+ T cells, which has been proposed to 
enhance anti- tumor immunity (27). Importantly, reports of T cell 
cross- reactivity between common bacterial and viral antigens and 

tumor- associated antigens also support a role for infectious history 
in long- term host immune status and anti- tumor immunity (28). 
Epitope mimicry may also occur between microbial antigens and 
tumor- associated antigens, leading to T and B cell cross- reactivity 
and a potentially enhanced anti- tumor immune response (29). 
For example, mumps and influenza infections have been found 
to enhance CD8+ T cell recognition of tumor- associated antigens 
and enhance overall anti- tumor immunity (30, 31). Similarly, 
extended antibiotic use is associated with higher breast cancer risk 
(32). This extensive interplay between host immune status and 
anti- tumor immunity raises a possibility that the peripheral TCR 
diversity shaped by infections and vaccinations may impact  
the intratumor immune microenvironment and breast tumor 
evolution.

Overtreatment of DCIS is a major clinical issue; thus, it is critical 
to identify clinically useful biomarkers that predict the risk of inva­
sive progression (33). Higher- grade DCIS exhibits greater immune 
infiltration, but it is also associated with higher risk of recurrence 
(34). Younger age is also one of the risk factors of DCIS progression 
and recurrence (35, 36) highlighting the impact of age on tumor 
evolution. Here, we show that peripheral blood TCR diversity is 
closely associated with peripheral blood global transcriptomes and 
the intratumor DCIS microenvironment including CD8+ T cell 
infiltration, and it might predict the risk of tumor progression in 
an age- dependent manner. The finding that in older DCIS patients, 
higher peripheral blood TCR diversity is associated with higher 
risk of recurrence (both ipsi-  and contralateral breast cancer) may 
seem paradoxical. This may be explained by the balance between 
anti- tumor immunity and tumor- supportive immunity, i.e., abun­
dance of immunosuppressive cells like regulatory T cells (Tregs). 
Antitumor immunity can also be a selection pressure that shapes 
tumor evolution—while stronger selection may delay tumor ini­
tiation, once tumors arose, they may progress faster as they have 
already passed an evolutionary bottleneck (37). Further studies 
using much larger cohorts are needed to determine whether and 
how host immunity and intra- tumoral immune cell composition 
can determine DCIS tumor evolution and whether TCR diversity 
per se or specific TCR sequences may be most relevant for deter­
mining outcomes. Assessing diversity of purified T cell subpopu­
lations (e.g., CD4+, CD8+, and Treg) would also be important due 
to the distinct biological functions of different T cells that can 
positively (e.g., Treg) or negatively (e.g., CD8+) impact tumor pro­
gression. The interpretation of TCR sequencing data is hampered 
by under- sampling issues. We used the Chao1 index throughout 
this manuscript to measure the unobserved size of the TCR reper­
toire considering the strong correlation with patient age. The 
Chao1 index specifically corrects for under- sampling, making it 
particularly suitable in our context. Deriving biological insights on 
a population level from higher- order diversity measures such as 
Shannon or Simpson clonality based on TCR sequencing data will 
likely require much larger patient datasets.

In summary, our results highlight the importance of peripheral 
immunity and age in tumor evolution and suggest further explo­
ration of blood TCR diversity as a biomarker of disease progression 
in larger patient cohorts.

Materials and Methods

Patient Samples. All patient samples were collected following informed con-
sent using protocols approved by the Dana- Farber Cancer Institute Institutional 
Review Board, protocol # 06- 169 (Young Women’s Breast Cancer Study, YWS) 
and Project SHARE (Specimens Help Research Efforts) (DF- HCC #93- 085)  
(all other cases). All samples used in this study are listed in the Dataset S1. YWS is 
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the largest cohort of women with young- onset breast cancer designed to  conduct 
regular medical record review and collect biospecimens and patient- reported 
outcomes. The original objectives were to 1) enroll a cohort of women age ≤40 
newly diagnosed with breast cancer; 2) characterize the cohort at diagnosis and 
in follow- up regarding disease and psychosocial outcomes; and 3) archive tumor 
and blood specimens for future studies. From 2006 to 2016, participants enrolled 
from 13 North American academic and community- based sites with high accrual of 
those approached (60%) and high participant engagement (average survey comple-
tion rate: 86%). This engagement has facilitated extended follow- up to investigate 
longer- term survivorship issues and outcomes. We have completed medical record 
review on 100% of participants through 18 mo post- diagnosis, collected ≥1 blood 
sample on 92%, and have centrally reviewed primary tumor pathology on 97%, 
with blocks archived on 84% and tissue microarrays created on 89%. At a median 
follow- up of 10.0 y in April 2023, the YWS is uniquely positioned for investigations 
of age- related tumor and host biology as well as for studies evaluating the impact 
of hereditary predisposition, post- diagnosis pregnancy, premature menopause, 
psychosocial, lifestyle, and care delivery on cancer endpoints and comorbidities. The 
EMBRACE (Ending Metastatic Breast Cancer for Everyone) Research Cohort Study 
(DF- HCC #09- 204) prospectively collects baseline whole blood and serial plasma 
samples along with clinical, pathologic, treatment, and outcomes data of patients 
with metastatic breast cancer treated at Dana- Farber Cancer Institute since 2009. 
In addition to data from YWS and EMBRACE, we also captured additional clinically 
annotated blood samples from Stage IV de novo breast cancer patients and patients 
with DCIS disease treated at DFCI under Project SHARE (Specimens Help Research 
Efforts) (DF- HCC #93- 085). Since its inception in 1993, Project SHARE has allowed 
us to collect a large biorepository of blood samples and a clinical outcomes database 
for future research studies. Clinical data elements used for the analyses included: 
time from initial breast cancer diagnosis date to date of blood draw, stage at initial 
diagnosis, histology, age at time of diagnosis, recurrence, and survival status.

TCR- Sequencing. Total RNA of peripheral blood was extracted from 400 μL of 
each blood sample using the Quick- DNA/RNA miniprep plus kit (Zymo Research) 
based on the manufacturer’s protocol for mammalian whole blood samples. The 
total amount of RNA was measured using the Qubit Fluorometer. Bulk TCR- 
sequencing was performed with 200 ng of total RNA. The sequencing and data 
preprocessing were performed by the Dana- Farber Cancer Institute Translational 
Immunogenomics Laboratory following the protocol of RNase H- dependent 
PCR enabled T- cell receptor sequencing (38). The fastq files generated from the 
Illumina MiSeq count the total number of reads. BLAST48 separates them into 
alpha and beta by aligning to chain- specific primers that were used in amplifi-
cation. MIXCR (39) is used to assemble and annotate the reads for alignment of 
each TCR, known V and J regions and identification of CDR3s and merges TRBV 
genes. The output of this pipeline was all unique clonotypes with V identity, CDR3 
amino acid sequence, read count, and frequency.

RNA- Sequencing. Total RNA of peripheral blood collected for the TCR- sequencing 
was used for RNA- sequencing. Library preparation and sequencing on an Illumina 
Nova- seq 6000 with paired- end reads was performed by the Dana- Farber Cancer 
Institute Molecular Biology Core Facilities. Library preparation was done using 
the KAPA mRNA HyperPrep Kit. The concentrations and fragment sizes of the 
libraries were measured using the Agilent TapeStation 2200 according to the 
manufacturer’s protocols. FFPE specimens (n = 18) were obtained from Brigham 
and Women’s Hospital, Massachusetts General Hospital, Faulkner Hospital, as 
well as a variety of other outside institutions part of the Young Women’s Study. 
The presence of DCIS was confirmed by hematoxylin- eosin staining of sections 
adjacent to the scrolls used for RNA preparation. Total RNA was extracted from 
40- μm scroll of FFPE specimens (n = 18) using the MagMAX™ FFPE DNA/RNA 
Ultra Kit (Thermo Fisher Scientific) based on the manufacturer’s protocol. FFPE 
RNA- sequencing was performed by Novogene.

Immunostaining. FFPE specimens were obtained from Brigham and Women’s 
Hospital, Massachusetts General Hospital, Faulkner Hospital, as well as a variety of other 
outside institutions part of the Young Women’s Study. All specimens stained (n = 16) 
were matched with samples used for FFPE tumor transcriptome analysis. Specimens 
were deparaffinized in xylene and ethanol and washed with tap water. Heat- induced 
antigen retrieval was performed in ethylenediaminetetraacetic acid (EDTA)- based 
solution (pH 9.0). Specimens were blocked with 10% normal goat serum in phos-
phate buffered saline (PBS) at room temperature for 15 min. Primary antibodies were 

diluted in 5% normal goat serum in PBS and incubated at 4 °C for overnight. Anti- CD8 
antibody (clone C8/144B) and anti- α- SMA antibody (clone 1A4) were obtained from 
Thermo Fisher Scientific. Secondary antibodies (Alexa Flour 555- conjugated anti- 
mouse IgG1 antibody and Alexa Flour 488- conjugated anti- mouse IgG2a antibody; 
Thermo Fisher Scientific) were diluted in 5% normal goat serum in PBS and incubated 
at room temperature for 1 h. After washing with PBS, specimens were mounted with 
VECTASHIELD® Vibrance™ Antifade Mounting Medium with DAPI (Vector Laboratories). 
Images were captured by the Nikon Ti/E inverted microscope and analyzed with QuPath. 
For the analysis, we manually selected DCIS tumors demarcated by α- SMA staining 
and their surrounding regions in which CD8+ cells existed. The number of CD8+ cells 
was automatically counted and normalized by the automatically calculated size of the 
DCIS tumor. The CD8 staining index was calculated based on the following formula: 
log2(number of surrounding CD8+ cells/mm2 DCIS tumor).

Data Analysis.
Calculation of TCR diversity. TCR diversity can be quantified and assessed in 
multiple different ways. As discussed in ref. 11, commonly used measures are 
related to the family of Hill numbers, also known as effective numbers of species. 
If N is the number of unique clonotypes in a sampled repertoire and pi are the 
respective frequencies of the N unique clonotypes, then:

Hill numbers = D
�
=

(

N
∑

i=1

p�
i

)1∕(1−�)

.

Taking the logarithm of Dα leads to Hα, the generalized measure of entropy, 
or the Renyi entropy:

Renyi entropy = H
�
=

1

1 − �

log

(

N
∑

i=1

p�
i

)

.

Different values of α correspond to metrics which weight differently the rel-
ative abundance of the TCR species, further capturing different aspects of the 
immune system. Here, we report TCR diversity measures of order 0 (α = 0, rich-
ness), 1 (α → 0, Shannon entropy), 2 (α = 2, Simpson index), as well as two 
additional measures: Pielou’s index and Chao1.

Richness (α = 0) is defined as simply the number of unique clonotypes, inde-
pendent of their abundance.

Richness = H0 = N .

Next, α → 1 corresponds to the Shannon entropy. Shannon entropy reaches its 
maximum when a repertoire consists of equally distributed TCR sequences (11):

Shannon entropy = H1 = −

N
∑

i=1

pi log pi .

Further, α = 2 in the Renyi entropy leads to H2 = − log(
∑N

i=1
p2
i
)   , which 

represents the logarithm of the probability of two randomly sampled TCRs with 
replacement to belong to the same clonotype (also known as the Simpson Index). 
Based on H2, we computed here the Simpson Clonality Index as follows:

Simpson Clonality =

√

∑N

i=1
p2
i
.

In addition to the above entropy measures, the clonality of the TCR reper-
toire can also be assessed using Pielou’s Index, a scaled version of the Shannon 
entropy, where the scaling factor equals the logarithm of the total number of 
species:

Shannon clonality = Pielou� s index = −
H1

log N
.

Equal clonotype frequencies correspond to a Shannon clonality of 0, and 
Shannon clonality scores closer to 1 suggest stronger clonal dominance.

All the 4 diversity measures introduced above assume that the observed clo-
notype distribution is also the real one. The human TCR repertoire is however D
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much more diverse than molecular sequencing can currently capture, leading to 
undersampling. In order to address the problem of unseen clonotypes which are 
real, but not present in the sequencing sample, we report and discuss the Chao1 
Index, an abundance- based nonparametric estimator for the total unobserved 
richness in a sample.

Chao1 index = N +
n1

2

2n2
,

where n1 and n2 are the number of singletons and doubletons (i.e., number of 
unique TCR sequences whose counts are one and two in the samples, respec-
tively) (40).

All graphs were generated using R 4.3.0. The Cox regression analysis was 
performed with the survival package (v3.5- 5) and the survminer package (v0.4.9).
Multiple correction testing. We performed multiple correction testing to calculate 
adjusted P- values in Fig. 1 and SI Appendix, Figs. S1 and S2. The P- values obtained 
in the analysis of each diversity index were combined and adjusted using the 
Benjamini–Hochberg method for the multiple correction testing of Fig. 1B and 
SI Appendix, Fig. S1 B and C. For Fig. 1D and SI Appendix, Fig. S1 D and E as well 
as Fig. 1E and SI Appendix, Fig. S2 A and B, the P- values obtained by pairwise 
t tests of each group of comparison were combined and jointly false discovery rate 
(FDR)- corrected. All results of multiple correction testing were listed in Dataset S2.
CDR3 sequence analysis. All CDR3 sequences were used for analysis. The Venn 
diagrams were plotted using the ggvenn package (v0.1.9) and VennDiagram 
package (v1.7.3). Fig. 2B data represent the count of clusters of CDR3 sequences 
generated using GIANA clustering (v1.2.0) without the TRBV variable gene option 
(13). GIANA was run in a linux- 64 environment with python 3.10.4. CDR3α clus-
tering data by GIANA are listed in Dataset S3. The antigen prediction analysis 
was performed using McPAS- TCR database via a web browser interface (14). 
Max Levenshtein distance was set to two (14). The output of database is listed in 
Dataset S4. In SI Appendix, Fig. S3E, we categorized the cluster in which either 
of predicted antigens were annotated to cancer antigen as “Cancer” while other 
clusters as “Allergy/Autoimmune/Pathogens/Others”.
Processing bulk RNA FASTQ files for both blood and tumor. Both the blood and 
tumor bulk RNA FASTQ files were processed using the RIMA (RNA- seq Immune 
Analysis) pipeline (41). RIMA performs integrative computational analysis of the 
tumor microenvironment from bulk tumor RNA- seq data. In RIMA, the raw reads 
are aligned to a reference genome (hg38) from GDC using the STAR (Spliced 
Transcripts Alignment to a Reference) tool. This tool converts the FASTQ to BAM 
files. The gene transcripts are quantified using Salmon which outputs TPM (tran-
scripts per million). TPMs were converted to a matrix using the tximport package 
and log normalized for further statistical analysis (15).
Bulk RNA­ sequencing of peripheral blood. All graphs were generated using 
R 4.3.0. Hierarchical clustering for the PCA plot was performed based on PC1 
and PC2 using hclust. The number of clusters was then decided based on sec-
ond differences D index values calculated by NbClust package (v3.0.1), which 
suggested two clusters as a first choice, followed by six clusters. We chose six 
clusters considering the evenness of the samples in each cluster and separation 
based on TCR diversity. Pre- ranked GSEA was performed using the FGSEA pack-
age (v1.24.0), while the DESeq2 package (v1.38.3) was used for the  pre- ranking 

of gene expression. The MSigDB C2 pathway collection (v7.5.1) was used for 
two- group comparisons. The MSigDB hallmark collection (v7.5.1) was used 
for cluster analysis. Enriched pathways in each cluster were analyzed for each 
cluster based on the one- by- one comparison between samples in one cluster 
and all other samples in the other clusters. Digital immune cytometry was 
performed by the BayesPrism algorithm with the reference of the Azimuth 
PBMC celltype.l1 or celltype.l2 (16). GSEA and BayesPrism analysis results are 
listed in Dataset S5.
Bulk FFPE RNA­ sequencing of younger DCIS tumors. All graphs were made 
using R 4.3.0. DEG analysis was performed using the DESeq2 package (v1.38.3) 
with a cut- off of adjusted P- values ≤ 0.05 to define the DEGs. Hierarchical clus-
tering in the heatmap of DEGs was performed by the Ward.D2 method in the 
ComplexHeatmap package (v2.14.0). Pre- ranked GSEA was performed by the 
FGSEA package (v1.24.0), and the DESeq2 package (v1.38.3) was used for the pre- 
ranking of gene expression. Each collection of the MSigDB C2 pathway subsets 
used were the Reactome subset (v2022.1), the WikiPathways subset (v2022.1), 
the PID subset (v2022.1), and the KEGG subset (v2022.1). The MSigDB hallmark 
collection (v7.5.1) was also used. Digital immune cytometry was performed by the 
BayesPrism algorithm with the reference of previously published breast tumor 
immune microenvironment data (42). GSEA and BayesPrism analysis results are 
listed in Dataset S6.

Data, Materials, and Software Availability. All data needed to evaluate 
the conclusions in the paper are present in the paper and/or supporting infor-
mation. The RNA- seq and TCR- seq data generated in this study have been 
deposited to the NCBI GEO database under accession number GSE239935 
(43). The code used for data analyses can be found at https://github.com/
Michorlab/TCRSeqBC (44).
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