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SUMMARY
Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To charac-
terize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-
driving super-enhancers and transcription factors by combining functional and molecular profiling with
computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcrip-
tional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs
share featureswithmesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription fac-
tor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in
luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal
state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study
of both experimental and clinical TNBC is an important resource for the scientific and clinical research com-
munities and opens venues for future investigation.
INTRODUCTION

Triple-negative breast cancer (TNBC) is characterized by the

lack of estrogen receptors (ERs) and progesterone receptors

(PRs) and HER2.1 TNBC patients have worse clinical outcome

with a higher 5-year recurrence rate than that of other subtypes.

TNBCs are highly heterogeneous and have been further classi-

fied based on gene expression profiles.2–4 However, the tran-
Ce
This is an open access article under the CC BY-N
scriptional and epigenetic drivers of these TNBC subtypes and

their impact on cellular phenotypes have not been defined.

We have previously described the dominant inheritance of

TNBC traits over ER+ luminal features via non-genetic mecha-

nisms.5 We also noted common super-enhancers (SEs) in ER+

luminal breast cancer cell lines and limited overlap of SEs in

TNBC lines. SEs are key for cellular identity and oncogenic tran-

scription.6,7 Thus, characterization of SEs and associated
ll Reports 42, 113564, December 26, 2023 ª 2023 The Author(s). 1
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transcription factors (TFs) in TNBC may help elucidate biologi-

cally and clinically relevant subtypes.

Here we describe comprehensive molecular, metabolomic,

and functional characterization of a large panel of TNBC cell lines

(n = 34) and patient-derived xenografts (PDXs; n = 15) with vali-

dation of these results in The Cancer Genome Atlas (TCGA)8 and

Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC)9 patient cohorts. By integrating our datasets using

Multi-Omics Factor Analysis (MOFA),10,11 we defined TNBC het-

erogeneity and identified the PRRX1 TF as an orchestrator of a

TF network in mesenchymal TNBC.

RESULTS

TNBC transcriptional subtypes
To assess TNBC transcriptional subtypes, we performed RNA

sequencing (RNA-seq) and histone H3 lysine 27 acetyl

(H3K27ac) chromatin immunoprecipitation sequencing (ChIP-

seq) on TNBC cell lines. Based on the expression of the top

20% most variable genes, we identified three major clusters,

defined as basal, luminal, and mesenchymal (Figures 1A and

S1A; Table S1). Clustering of the H3K27ac ChIP-seq samples

using the top 20% most variable SEs or peaks identified the

same three major subtypes as RNA-seq with a few outliers

(Figures 1B and S1B–S1D; Table S1). We also observed sub-

type-specific differences in overall H3K27ac signal in both SEs

and peaks (Figures 1C and S1E). Mesenchymal TNBC had a

higher proportion of H3K27ac reads in peaks compared with

basal and luminal subtypes (Figure S1E) and more H3K27ac

reads in SEs compared with the luminal subtype (Figure 1C). Dif-

ferences in H3K27ac levels showed some associations with the

number of expressed genes and variability in gene expression

(Figures S1F and S1G).
Figure 1. Comprehensive molecular profiles of TNBC

(A) Dendrogram depicting clustering of 34 TNBC cell lines based on the expressio

on genes differentially expressed between the three major clusters. See also Tab

(B) Dendrogram depicting clustering of 33 TNBC cell lines based on H3K27ac si

(C) Boxplots showing the proportion of H3K27ac reads in SEs for cell lines in each

Dunn’s test, adjusted using Holm’s method. Center lines shows medians. Hinges

highest value that is no further than 1.5 times the IQR from the hinge. Lower whisk

1.5 times the IQR from the hinge.

(D) Metacore networks enriched in differentially expressed genes (DEGs) among

(E) Metacore networks enriched in TNBC transcriptional subtype-specific differe

(F) Heatmap demonstrating TNBC cell line sensitivity to SMIs.

(G) Heatmap showing clustering of 34 TNBC cell lines based on the top 50%most

average.

(H) Plot depicting sensitivity to the A1155463 BCL-xl inhibitor in TNBC lines whe

Whitney U test.

(I) Plot depicting the correlation between BH3 profiling and drug area under the vi

TNBC cell lines (p = 0.0113, R2 = 0.1844, Pearson correlation).

(J) Dendrogram depicting clustering of 34 TNBC cell lines based on DNA methyl

(K) Heatmap showing clustering of 34 TNBC cell lines based on the top 20%most

in mean log-normalized H3K27ac, H3K27ac1K36me1, H3K27ac1K36me2, and H

and 0.25 (mesenchymal). Average difference in log-normalized H4 (20–23) K2

(mesenchymal).

(L) Immunofluorescence for H4K20me3 in SUM185 (luminal), FCIBC02 (basal), a

(M) Representative histone H4K20me3 immunofluorescence staining of four TNB

(N) Heatmap showing clustering of 34 TNBC cell lines based on the levels of the

from metabolite average. Values are capped at ±3 for the purpose of visualizatio

See also Figure S1 and Tables S1–S17. Blue, red, and green colors mark lumina
To assess the functional relevance of subtype-specific

expression and SE profiles, we performedMetacore network an-

alyses.12 Pathways related to cell matrix interactions and devel-

opment showed enrichment in mesenchymal subtype-specific

transcripts and SEs, while hormonal signaling- and luminal dif-

ferentiation-related pathways characterized luminal-specific

transcripts and SEs (Figures 1D and 1E; Table S2). Genes with

basal-specific expression were enriched in cell adhesion- and

inflammation-related pathways, while basal-specific SEs were

enriched in cell adhesion- and stem cell-related signaling

pathways.

SE-driven genes commonly drive tumorigenesis and are ther-

apeutic targets.13 Thus, we performed a cellular viability screen

in 34 TNBC lines with 24 small-molecule inhibitors (SMIs) target-

ing pathways corresponding to SE-associated genes or genes

with known function in TNBC. Clustering of the lines based on

their treatment-related decrease in cellular viability demon-

strated no clear transcriptional subtype-specific pattern (Fig-

ure 1F; Table S3). Among the most differentially effective inhibi-

tors were ones targeting MEK, BCL-xl, and FGFR. The DU4475

cell line with mutant BRAFwas the most sensitive to the MEK in-

hibitor trametinib, while SUM185 and MFM223 luminal AR+ cell

lines with FGFR amplification showed the highest sensitivity to

the BGJ398 FGFR inhibitor.

To determine whether differences in drug sensitivity were

driven by differences in apoptosis susceptibility, we performed

BH3 profiling to determine apoptotic priming and anti-apoptotic

dependencies for survival. We identified three BH3 profile

clusters independent of transcriptional subtypes (Figure 1G;

Table S3). Cells in cluster 1 depend on the anti-apoptotic

BCL-2 family members BCL-2, BCL-xl, or BCL-w for survival,

based on their response to BAD. Because of their response to

the BCL-xL-specific HRK peptide and BCL-xL inhibitors
n of the top 20%most variable genes. Subtype identifiers were assigned based

le S1.

gnal in the top 20% most variable SEs.

TNBC subtype. Overall p value from Kruskal-Wallis test. Pairwise p values from

show interquartile ranges. Upper whiskers extend from the upper hinge to the

erslate extends from the lower hinge to the lowest value that is nor further than

the three TNBC transcriptional subtypes. See also Table S2.

ntial SEs. See also Table S2.

variable BH3 peptides. Values shown are abundance differences from peptide

re BCL2L1 is an SE or not. Error bars represent mean ± SEM; p value, Mann-

ability curve for treatment response (AUC) for the A1155463 BCL-xl inhibitor in

ation levels in the top 20% most variable SEs.

variable histone marks determined by mass spectrometry. Average difference

3K27ac1K36me3 values from cell line average = 0.032 (luminal),�0.17 (basal),

0me3 value from cell line average = 1.48 (luminal), �0.063 (basal), �0.71

nd SUM159 (mesenchymal) cell lines. Scale bars, 50 mm.

C patient samples from the tissue microarray (TMA). Scale bars, 50 mm.

top 20% most variable metabolites. Values shown are expression differences

n.

l, basal, and mesenchymal TNBC transcriptional subtypes in all figures.
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A-115463 and A-1331852, this survival dependency is based

mostly on BCL-xL. Cells in cluster 2 are characterized by a higher

overall priming (response to BIM and PUMA) and dual depen-

dency on the anti-apoptotic MCL-1 and BCL-xL proteins

(response to MS1 and HRK peptides), while cluster 3 is overall

less primed and less dependent on specific anti-apoptotic

BCL2 family members for survival than the other clusters (Fig-

ure 1G). BCL2L1 (encoding BCL-xl) is one of the few recurrent

SEs in TNBCs (Table S1). Sensitivity to the BCL-xl inhibitor

A-115463 was significantly higher in cell lines where BCL2L1

was an SE (Figure 1H), whereas cellular sensitivity to

A-1155463 only weakly correlated to the direct mitochondrion

effect of the drug assessed by BH3 profiling (Figure 1I).

These data demonstrate that SEs can reveal therapeutic tar-

gets in TNBC, although the high variability among samples

makes the identification of common vulnerabilities challenging.

TNBC epigenetic and metabolomic subtypes
To characterize TNBC epigenetic heterogeneity, we first as-

sessed genome-wide DNA methylation patterns. Clustering of

the samples based on variable DNA methylation in SEs, pro-

moters, and gene bodies revealed distinct subsets that did not

match the transcriptional subtypes (Figures 1J and S1H–S1J;

Table S1). Integrating transcriptomic, H3K27ac, and DNA

methylation data, we found that gene expression was signifi-

cantly inversely correlated with DNA methylation, and it was

positively correlated with H3K27ac in SEs (Figure S1K).

Next, we performed quantitative histone mass spectrometry,

which revealed two main clusters driven by histone modifica-

tions associated with active (e.g., H3K27ac) and repressive

(e.g., histone H3 lysine 27 trimethyl - H3K27me3) chromatin (Fig-

ure 1K; Table S3). Histone H4 lysine 20 trimethyl (H4K20me3)

was the most variable histone mark and more abundant in

luminal lines (Figure 1K). Genes differentially expressed between

cell lines with high and low H4K20me3 levels had significant

enrichment in cell adhesion, development, and inflammation-

related networks (Figure S1L; Table S2). We investigated

H4K20me3 in more detail by immunofluorescence in TNBC lines
Figure 2. Integrated analysis of the genomics data using multiomics fa

(A) Bar graph of the proportion of variance explained in each dataset by F2, F3,

(B) Scatterplots depicting F2, F3, and F6 values across TNBC cell lines.

(C) Scaled F2weights for the histonemark combinations with the largest absolute

absolute weights for this factor. Scaled weights for each factor in each dataset are

values to lie between �1 and 1.

(D) Scaled mRNA weights for F3, with the top five negatively and positively weight

from the weights for that factor in that dataset by linearly rescaling the values to

(E) Metacore networks for F2, F3, and F6 positive mRNA weights. See also Tabl

(F) Bar graph showing the variance explained by F1 within each dataset.

(G) Scatterplots of total signal in each dataset against F1 scores; p values, Holm

(H) Scaled F1 weights for the histone mark combinations with the largest absolu

derived from the weights for that factor in that dataset by linearly rescaling the v

(I) Correlations between MOFA F1–F8 and SMI features. Dot colors and sizes rep

and factors.

(J) Scatterplot showing F4 scores and trametinib AUC across TNBC cell lines.

(K) Bar graph showing variance explained for F4 across each dataset.

(L) Metacore networks for F4 positive and negative mRNA weights. See also Tab

(M) Scaled F4weights for themRNA andmetabolomics features with the largest ab

the weights for that factor in that dataset by linearly rescaling the values to lie be

See also Figure S2 and Table S4.
and primary tumors. We found subtype-specific differences with

a stronger signal in luminal SUM185 than basal FCIBC02 and

mesenchymal SUM159 cells (Figure 1L). Analysis of 81 primary

TNBCs showed high variability for H4K20me3 signal both among

and within tumors but no significant association with recurrence-

free survival or luminal and basal markers (Figures 1M, S1M,

and S1N).

Metabolomic profiling of TNBC lines using mass spectrometry

for 228 metabolites demonstrated transcriptional subtype-inde-

pendent clustering mainly driven by mutually exclusive levels of

reduced glutathione (GSH) and cystine; cells with high GSH also

had high coenzyme A (Figure 1N; Table S3). GSH is a major anti-

oxidant, while cystine is the oxidized form of cysteine; thus, cell

lines with low GSH and high cystine levels may have higher

reactive oxygen species (ROS) levels compared with GSHhigh

cystinelow samples.

Our multiomics profiling revealed that TNBC transcriptional

subtypes correlate with SE landscape but not with other epige-

netic and metabolic profiles.

Integrated evaluation of TNBC using latent factor
analysis
To better understand drivers of TNBC heterogeneity, we per-

formed integrated analyses of all molecular data using

MOFA.10,11 DNA methylation data were split into three datasets:

promoter, gene body, and non-genic regions of SEs. The MOFA

model assumes that variations from the average profile in each

dataset depend linearly on the values of a few latent factors.

We used MOFA to identify the latent factors active in each cell

line and their molecular effects. When fitting the model to the

normalized datasets, we identified eight factors based on the

maximum number of factors expected to be reliably recoverable

(STAR Methods; Figures S2A and S2B; Table S4). The total vari-

ance explained in each dataset, considering all MOFA factors,

ranged from 19.3% (for histone mass spectrometry) to 53%

(for promoter methylation). Factors 2, 3, and 6 were significantly

correlated with transcriptional subtypes (Figures 2A and 2B),

with the strongest correspondence observed for Factor 2 (F2)
ctor analysis (MOFA)

and F6.

weights for this factor and scaled F2weights for themetabolites with the largest

derived from the weights for that factor in that dataset by linearly rescaling the

ed features labeled. Scaled weights for each factor in each dataset are derived

lie between �1 and 1.

e S2.

-adjusted Pearson correlation test.

te weights for this factor. Scaled weights for each factor in each dataset are

alues to lie between �1 and 1.

resent Pearson’s correlation coefficient values for the indicated pairs of drugs

le S2.

solute weights. Scaledweights for each factor in each dataset are derived from

tween �1 and 1.
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Figure 3. Validation of MOFA factors in PDXs and clinical samples

(A) Variance explained by each PDXMOFA factor in the PDX data. Methyl SE: n = 15, p = 2,835; methyl GB: n = 15, p = 4,992; methyl TSS: n = 15, p = 4,996; ChIP-

seq SE: n = 12, p = 5,120; mRNA: n = 15, p = 5,000.

(B) Variance explained in each dataset by each TCGA TNBC MOFA factor. Methyl SE: n = 83, p = 2,462; methyl GB: n = 83, p = 4,463; methyl TSS: n = 83,

p = 4,704; mRNA: n = 115, p = 4,736..

(C and D) Heatmaps showing overlaps between top features by absolute weight for each cell line MOFA factor and top features by absolute weight for each of the

MOFA factors derived from PDX (C) and TCGA TNBC (D) samples. Cell colors represent the average of the negative log2-transformed adjusted hypergeometric

test p values for tests corresponding to the pair of factors indicated by the row and column; p value adjustment by Holm’s method. Tests for overlap were

(legend continued on next page)
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and F3. Cell lines with high F2 and F3 contribution were luminal

and mesenchymal, respectively (Figure 2B). F2 explained a pro-

portion of variance (>2%) in all datasets (Figures 2A and S2B),

suggesting that biological differences between luminal and other

transcriptional subtypes manifest broadly across phenotypes

(Figure 2C). The top-weighted histone mark for F2 was

H4K20me3 (Figure 2C), while RNA-seq for F3 showed the high-

est weights for genes highly expressed in mesenchymal cells

(e.g., PRRX1), suggesting that these genes might regulate F3

(Figure 2D). Metacore network analysis14 of top-weighted fea-

tures showed that F3 had significant enrichment in cell matrix-

and extracellular matrix-related networks, while F2 had signifi-

cant enrichment for a range of pathways, including ER signaling

(Figure 2E). Analysis of correlations between contributions of F2

and F3 and the total signaling level (summed across all features)

of each of the datasets found that F2 was negatively correlated

with total signal for H3K27ac in SEs, while no correlation was

observed for F3 related to the mesenchymal state (Figures

S2C and S2D; Table S4).

F6 was also significantly associated with transcriptional sub-

type and separated most of the basal cell lines from the other

two types (Figure 2B). F6 explained a proportion of variance in

most datasets (Figure 2A). Pathway analysis for the critical F6

genes in the RNA-seq dataset revealed an enrichment for cell-

cycle-related pathways (Figure 2E). Thus, this factor might be

linked to proliferation.

MOFA reveals transcription subtype-independent
variation in TNBC
F1, F4, F5, F7, and F8 were not significantly correlated with tran-

scription subtype. F1 explained substantial proportions of vari-

ance in DNA methylation (range: 18.5%–28.7%) and histone

mass spectrometry data (9.4%; Figure 2F). The contribution of

F1 to cell lines was strongly correlated with total signal in each

of the methylation datasets (Figure 2G; Table S4). In the histone

mass spectrometry data, the top positively weighted features

for F1 were histone marks characteristic of repressive chro-

matin (H3K36me2, H3K27me2, and H3K27me3), which are

associated with higher levels of DNA methylation (Figure 2H).

These findings suggest that variance in DNA methylation may

be an important transcription subtype-independent driver of

TNBC heterogeneity.

Next, we correlated our MOFA results with SMI screen data.

After correcting for multiple testing, we detected a significant as-

sociation between F4 and trametinib (a MEK inhibitor), driven by

the DU4475 BRAF mutant cell line (Figures 2I and 2J). Variance
performed for all datasets where the cell line factor explained at least 2% of varia

validation model factors.

(E) Venn diagrams of overlaps between the top 200 features by absolute weight fo

hypergeometric test p values are shown.

(F) Venn diagrams of overlaps between the top 200 features by absolute weigh

adjusted hypergeometric test p values are shown.

(G) Scatterplots of total signal in each dataset plotted against TCGA F1 scores.

(H) Scatterplots of total signal in each dataset plotted against PDX F1 scores. Ho

(I) Bee swarm plot showing PDX F3 scores across PDX samples. Samples are co

signatures. Points are jittered along the horizontal axis for the purpose of visualiz

(J) Plot showing TCGA TNBC F6 and F7 scores for all TCGA TNBC samples, color

See also Figure S2 and Table S5.
decomposition analysis suggested that F4 was most influential

in shaping the DNA methylation, transcriptional, and metabolic

landscapes (Figure 2K). Interrogation of highly weighted F4 fea-

tures revealed high positive weights for metabolites linked to

nucleotide synthesis and identified an enrichment for Wnt

signaling-related genes among the top negatively weighted

mRNA features (Figures 2L and 2M). Thus, activation of F4 in

DU4475 cells might be related to the APC mutation in this cell

line.15

F5 explained substantial proportions of variance in the DNA

methylation and low proportions of variance in the other data-

sets (Figures S2E–S2G). After assessing the pathways for

top-weighted genes using feature set enrichment analysis

andMetacore, we found multiple pathways significantly related

to sensory perception and olfactory stimulation (Figures S2H

and S2I). F7 and F8 explained appreciable proportions of vari-

ance in the epigenetic and low proportions of variance in the

other datasets (Figures S2J–S2O). Pathway analysis of these

factors showed enrichment for RNA binding, catabolic pro-

cesses, and maintenance of protein location (Figures S2I,

S2L, S2O, S2P, and S2Q). F7 values were positively correlated

with the total signal in H3K27ac data (Figure S2R; Table S4).

These data show that MOFA can identify features of TNBC

lines not obvious in individual data types and highlight that the

imprint of cellular phenotypes is discernible at multiple levels.

Clinical relevance of MOFA factors in TNBC
To assess the clinical relevance of these MOFA factors, we fit

analogous MOFA models to data from our 15 TNBC PDXs and

data for 115 TNBC TCGA samples. We used 8 factors for the

TCGA cohort to match the number of factors used in the original

model and 3 factors for the PDX cohort due to smaller sample

size (Figures 3A–3F). We compared the top 200 most highly

weighted features for each cell line MOFA factor in each dataset

where the factor in question explained more than 2% of variance

with the top 200 features for each of the new factors in the same

dataset to assess the similarity between the original factors and

the newly inferred factors. Using this approach, we found that

highly weighted features from 6 (F1–F6) of 8 of the original factors

significantly overlapped with highly weighted features for at least

one factor in the PDX model. We also found that the same six

factors had a significant overlap with at least one factor in the

TCGA model (Figures 3C and 3D; Table S4). In the PDX model,

the most significant overlaps for F1, F4, and F5 involved PDX

F1, for F2 and F6 involved PDX F2, and for F3 involved PDX F3

(Figures 3C and 3E; Table S4). In the TCGA cohort, the most
nce in the original model. Rows indicate cell line factors, and columns indicate

r the indicated cell line and PDX factors in the indicated dataset. Holm-adjusted

t for the indicated cell line and TCGA factors in the indicated dataset. Holm-

Holm-adjusted Pearson correlation test p values are shown.

lm-adjusted Pearson correlation test p values are shown.

lored by their assigned TNBC subtype based on the cell-line-defined RNA-seq

ation.

ed according to assigned TNBC subtype based on cell-line-derived signatures.

Cell Reports 42, 113564, December 26, 2023 7
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significant overlaps for F1–F3 involved TCGA F1, F7, and F6; for

F4 and F5 involved TCGA F3; and for F6 involved TCGA F4

(Figures 3D and 3F).

We also analyzed the correspondence between TCGA and

PDX factor contributions and total signal from each dataset

and TNBC subtype signatures derived from bulk RNA-seq. As

observed for F1, both PDX F1 and TCGA F1 correlated strongly

with total signal in each of the methylation datasets in the PDX

and TCGA cohorts, respectively (Figures 3G and 3H; Table S4);

similar correlations were also observed for TCGA F3 and F5

(Table S4). Additionally, PDX F3 and TCGA F6 and F7 were

significantly correlated with transcriptional subtypes; however,

this was also the case for TCGA F4, F5, and F8. As for F3,mesen-

chymal samples had high values for PDX F3 and TCGA F6 in

these two datasets (Figures 3I and 3J). Like F2, luminal samples

had high values for TCGA F7 (Figure 3J).

Most factors from the original model had significant overlaps

with more than one factor in each validation model. For both

the PDX and TCGA models, the most significant of these alter-

nate mappings involved F3. F3 showed significant overlaps

with PDX F3 and PDX F2 in the PDX model and with TCGA F2

and TCGA F6 in the TCGA model (Figures 3C and 3D;

Table S4). We hypothesize that this may be due to similar but

distinct biological factors active in non-tumor cells detected in

the patient samples.

Taken together, these results support the conclusion that F1–

F6 capture clinically relevant features that influence variability in

primary TNBC.

Intra-tumor cellular heterogeneity of TNBC
To evaluatewhether TNBC transcriptional subtypes are reflected

in the proteome and are homogeneous within cell lines, we per-

formed cytometry by time of flight (CyTOF)16 on 34 TNBC lines

for a panel of 31 protein markers associated with luminal and
Figure 4. Intra-tumor heterogeneity assessment by single-cell analyse

(A) UMAP visualization of scRNA-seq gene expression data from TNBC cell lines.

bulk RNA-seq.

(B) Bar plot showing significantly enriched TNBC transcriptional subtype signatu

subtype.

(C) Hexagonal plots showing significantly enriched TNBC transcriptional subtype

represents a single cell. Cells are positioned along each axis according to bootstra

Cells significantly enriched for each signature are shown along the corresponding

with no significant enrichments are shown in gray.

(D) Average MOFA F2 and F3 scores of single cells from each sample.

(E) Inferred MOFA F2 and MOFA F3 scores for HDQP1 single cells (blue) and all o

(F) UMAP visualization of HDQP1 cell line scRNA-seq data.

(G) Enrichment scores of TNBC subtype signatures in single cells of HDQP1 by c

compared with average expression across HDQP1 cells after correcting for the d

(H) Cluster-specific expression of TFs differentially expressed in HDQP1 cluster

(I) UMAP visualization of HDQP1 single cells, colored by expression of the six m

(J) Boxplot showingmean estimated raw variance across highly expressed genes

samples, only the higher-depth replicate is shown. Bottom and top hinges of inse

upper hinge to the highest value that is no further than 1.5 times the interquartile

lowest value no further than 1.5 times the IQR from the hinge.

(K) Boxplot showing mean estimated raw SCV across highly expressed genes in

samples, only the higher-depth replicate is shown. Bottom and top hinges of inse

upper hinge to the highest value that is no further than 1.5 times the interquartile

lowest value no further than 1.5 times the IQR from the hinge.

See also Figure S3.
mesenchymal/basal features, signaling pathways, and prolifera-

tion. CyTOF data were depicted as trees built using the X-shift

method17 and a uniformly sized subset of cells from each sam-

ple. This approach allowed us to visualize the position of individ-

ual cell lines on the tree (Figure S3A). We found that each of the

TNBC subtypes occupied a different general area of the tree,

with limited overlap in the regions occupied by cell lines

belonging to different subtypes. An exception to this was the

HDQP1 basal cell line, where some cells occupied the mesen-

chymal region of the tree (Figure S3A), while others were more

closely related to basal cell lines.

We further evaluated a subset of TNBC cell lines by single-cell

RNA-seq (scRNA-seq) to better understand the extent of cellular

heterogeneity. The UMAP (Uniform Manifold Approximation and

Projection) plot of all cells showed cell-line-specific clustering

and limited heterogeneity within individual cell lines (Figure 4A).

Statistical testing of enrichment of bulk RNA-seq-derived

TNBC luminal, basal, andmesenchymal signatures in single cells

further suggested limited TNBC subtype heterogeneity in

mesenchymal and luminal lines, withmost heterogeneity present

in basal lines (Figures 4B and 4C). We then calculatedMOFA fac-

tor scores for the single cells of each sample. Average F2, F3,

and F6 scores across single cells within each sample mirrored

the factor scores observed for the same cell lines from bulk

RNA-seq data (Figures 2B, 4D, S3B, and S3C). Samples with

high average F2 and F3 values were luminal and mesenchymal,

respectively. The HDQP1 line had two subclusters, with the ma-

jority of cells occupying the basal region of the plot and a subset

closer to the mesenchymal section (Figure 4E, S3D, and S3E).

The UMAP plot of HDQP1 alone showed eight cell clusters,

with cluster 6 being distant from the rest of the cells and highly

enriched in the mesenchymal signature (Figures 4F and 4G).

To explore potential regulators of this mesenchymal subclone,

we performed differential gene expression analysis for cluster
s

Single cells from each cell line are colored according to assigned subtype from

res (bootstrap p <0.05) in single cells from samples belonging to each TNBC

signatures for all analyzed single cells from four cell line samples. Each point

p classification score (1 minus bootstrap p value) for the indicated cell identity.

edges of the plot. Cell colors represent significantly enriched signatures; cells

ther single cells (red). Circled regions show two apparent HDQP1 subclusters.

luster. Scores measure the difference in TNBC subtype signature expression

ifferences observed for random size-match signatures.

6.

ostly strongly overexpressed TFs in cluster 6.

in single-cell samples assigned to each subtype. For cell lines with two replicate

t box plots show the 25th and 75th percentiles. Upper whiskers extend from the

range (IQR) from the hinge. Lower whiskers extend from the lower hinge to the

single-cell samples assigned to each subtype. For cell lines with two replicate

t box plots show the 25th and 75th percentiles. Upper whiskers extend from the

range (IQR) from the hinge. Lower whiskers extend from the lower hinge to the
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6 versus the other clusters, focusing on TFs, and identified

NR2F1, PRRX1, RUNX3, ETV1, HIF1A, ZEB1, and TWIST1 as

the top differentially expressed TFs (Figures 4H and 4I).

We then investigated whether transcriptomic heterogeneity

varied by transcriptional subtype. Considering only highly ex-

pressed genes, we used the single-cell read count distribution

for each gene in each sample to estimate each gene’s mean

expression, biological variance, and raw squared coefficient of

variation (SCV) in the sample. Using a simulation study, we

confirmed that the estimates provided by our approach were ex-

pected to have low average bias across genes in each sample

(Figures S3F–S3H). For these highly expressed genes, average

estimated raw variance and average estimated raw SCV did

not differ significantly across transcriptional subtypes, although

we observed a trend toward higher rawSCV in the basal cell lines

(Figures 4J and 4K). We obtained similar results when investi-

gating the effect of TNBC type and average expression on raw

variance using linear mixed-effects models (Figure S3I).

TNBC cell lines display remarkable cellular homogeneity of

TNBC subtypes, implying robust regulatory mechanisms,

although minor subpopulations with more unstable cell states

cannot be excluded.

Clinical relevance of TNBC subtype heterogeneity
Next, to evaluate the clinical relevance of the TNBC subtypes we

identified, we performed unbiased hierarchical clustering of

TNBC tumors from the METABRIC9 and TCGA8 cohorts, anno-

tated using our TNBC transcriptional subtype signatures. We

found that luminal TNBC was more distinct from the other two

subtypes in both datasets, while therewasmixing between basal

and mesenchymal subtypes (Figures S4A–S4C). In the

METABRIC cohort, there were significant differences in tumor

cellularity between TNBC subtypes, with mesenchymal tumors

having significantly lower cellularity. In the TCGA cohort, total

absolute CIBERSORTx18 scores across 22 immune cell types

differed significantly between subtypes (Figure S4D), with signif-

icantly higher absolute scores in mesenchymal-classified

compared with luminal-classified tumors, suggestive of higher

proportions of immune cells. Thus, the apparent mixing of tu-

mors may partly be due to stromal cells expressing mesen-

chymal TNBC subtype-specific genes.

To test whether the TNBC transcriptional subtypes or MOFA

factors are prognostic, we calculated MOFA factor scores for

samples from the TCGA and METABRIC cohorts and tested

for associations between the calculated factor scores, inferred

TNBC subtypes, and survival (Table S5). We first examined

transcriptional subtype-independent factors (F1, F4, F5, F7,

and F8). We found that high F7 scores were associated with

shorter disease-specific survival (DSS) and progression-free

survival (PFS) in the TCGA cohort (Figure S4E) but that neither

associations remained significant when controlling for age

and pathological stage (Table S5). Inferred F7 values were not

correlated with survival in the METABRIC cohort (Figure S4F;

Table S5). A possible explanation for these discordant results

is that the F7 scores inferred using expression data only for

theMETABRIC cohort may bemore variable than those inferred

for the TCGA cohort, which make use of DNA methylation data

alongside expression data.
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Next, we examined associations between survival and MOFA

factor scores for the three TNBC subtype-linked factors (F2, F3,

and F6) as well as associations between survival and signature-

based inferred TNBC subtype. High F6 scores were significantly

correlated with longer PFS in the TCGA cohort (Figure S4E). We

also observed significant differences in DSS by TNBC subtype in

the TCGA cohort, with significantly shorter DSS in the luminal

and mesenchymal subtypes (Figure S4E; Table S5). However,

neither TNBC subtype nor inferred F6 scores were significantly

associated with survival in the TCGA cohort after controlling

for age and pathological stage (Table S5). Neither variable was

associated with survival in the METABRIC cohort (Figure S4F;

Table S5).

To further investigate these results, we examined the distribu-

tion of MOFA F2, F3, and F6 scores in both primary data cohorts.

We observed that, in both cohorts, there was a small subset of

mesenchymal-assigned samples with high values of F3 (mesen-

chymal-high samples) (Figure S4G and S4H). Notwithstanding

that the mesenchymal-high sample size was small in the TCGA

cohort, we found that the mesenchymal-high group was signifi-

cantly associated with shorter DSS in both cohorts (Figures S4I

and S4J; Table S5). This association remained significant in the

METABRIC cohort when controlling for age, tumor size, and

number of positive lymph nodes (Table S5). In the METABRIC

cohort, we also observed a significant association between

mesenchymal-high and DSS when we used an alternate clus-

tering-derived threshold on F3 scores to define mesenchymal-

high samples (Figures S4K and S4L). However, we found no sig-

nificant differences in DSS between the resulting three groups

when we redefined the basal, luminal, andmesenchymal sample

groups by clustering on F2, F3, and F6 scores (Figures S4M and

S4N). One possible explanation for these results is that the

stringent criteria used to define the mesenchymal-high groups

remove false-positive mesenchymal samples from our signa-

ture-based calls and that this more stringent set of calls enables

us to detect an underlying association between the mesen-

chymal subtype and poor outcome in primary TNBC in both co-

horts that would otherwise be undetectable in the METABRIC

cohort. Nevertheless, a larger sample set for the mesen-

chymal-high subtype is needed to follow up on these results.

TNBC subtype-specific TFs
To identify TFs regulating TNBC subtypes, we integrated our

RNA-seq and H3K27ac ChIP-seq data and identified 46 TFs ex-

pressed in a subtype-specific manner and associated with sub-

type-specific SEs (Figure 5A). Luminal TFs included many genes

with well-established roles in luminal differentiation (e.g., FOXA1)

and several less characterized ones (e.g., ASCL2). Mesen-

chymal TFs consist of some well-known EMT-inducers (e.g.,

ZEB1) and the PRDM8 transcriptional repressor.19 Several of

the basal TFs have known roles in mammary stem cells (e.g.,

BCL11A)20 or are known oncogenes (e.g., ETV6).21

To assess TF networks, we performed STRING protein inter-

action network analysis22 for these 46 TFs. We found highly con-

nected TF interaction networks in both luminal and mesen-

chymal TNBC, while basal TFs were less interconnected

except for FOXC1 (Figure 5B). The TF with the most connections

in the luminal subtype was FOXA1, a known luminal pioneering
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factor,23 while in the mesenchymal subtype, multiple TFs (e.g.,

TWIST1, ZEB1, and PRRX1) were well connected, implying a

cross-regulatory network. In neuroblastomas, PRRX1 acts as a

switch driving adrenergic cells toward a mesenchymal state

by reprogramming the SE and mRNA landscapes.24,25 To test

the relatedness of PRRX1-driven mesenchymal tumors from

different organs, we compared the gene expression profiles of

TNBC, non-TNBC breast cancer, neuroblastomas, and atypical

teratoid rhabdoid tumors (ATRTs). ATRTs are poorly differenti-

ated pediatric tumors that are also divided into mesenchymal

and neurogenic epigenetic subtypes.26 Mesenchymal TNBC

lines clusteredmore closely with ATRT andmesenchymal neuro-

blastoma (e.g., GIMEN) cell lines expressing PRRX1 than with

luminal and basal TNBC (Figure 5C). These data highlight the

loss of organ-specific features in poorly differentiated tumors

and identify PRRX1 as a candidate driver of themesenchymal tu-

mor subtype regardless of tissue of origin.

The functional relevance of PRRX1 in TNBC
To determine whether PRRX1 is a dependency in mesenchymal

TNBC, we expressed three independent tetracycline (TET)-

inducible short hairpin RNAs (shRNAs) targeting PRRX1 and a

non-targeting control in Hs578T mesenchymal TNBC and

TTC642 rhabdoid cell lines (Figures S5A and S5B). Downregula-

tion of PRRX1 had no significant impact on cellular viability, cell

migration, invasion, or adhesion in either cell line (Figures S5C

and S5D). Downregulation of PRRX1 also did not affect

Hs578T xenograft growth and histology (Figures S5E and S5F).

Thus, PRRX1 is not required for the growth of mesenchymal can-

cer cells, although incomplete knockdown by shRNA cannot be

excluded.

To investigate whether PRRX1 is sufficient to induce the

mesenchymal subtype, we expressed wild-type (WT) PRRX1

and a DNA bindingmutant (dbm) with reduced DNA binding affin-

ity25 in basal (EMG3 and HCC3153) and luminal (SUM185 and

MFM223) TNBC lines in a TET-inducible manner (Figure S5G).

Exogenous expression of both WT and dbm PRRX1 significantly

reduced cellular proliferation in all four cell lines (Figure 5D). We

also observed a significant decrease in xenograft tumor growth

upon WT PRRX1 expression in SUM185 luminal tumors and

upon dbm PRRX1 expression in HCC3153 basal tumor (Figures

5E and S5H). Histologic analysis of the xenografts demonstrated

more mesenchymal features after PRRX1 overexpression (Fig-

ure S5I). To further investigate this observation, we analyzed
Figure 5. PRRX1 is a mesenchymal subtype-specific TF

(A) Heatmap of mRNA expression of TNBC subtype-specific TFs. Differences in

(B) STRING-based protein-protein interaction network for TNBC subtype-specifi

(C) Scatterplot of cell line RNA-seq data by principal components 1 and 2. The pe

brackets.

(D) Viable cell numbers after expression of dox-inducibleWT or dbmPRRX1 in the

by two-tailed unpaired t test.

(E) Plot depicting weights of xenografts derived from SUM185 and HCC3153 cell

Error bars represent mean ± SEM, n = 10 tumors, p values by two-tailed unpaire

(F) E-cadherin and vimentin immunofluorescence staining of xenografts derived fr

without dox in the diet. Scale bars, 50 mm and 100 mm.Multiple representative ima

(G) Plots depicting viable cell numbers of HCC3153 and SUM185 cells following pa

indicated days. Error bars represent mean ± SEM, p values by nonlinear fit test,

See also Figure S5.
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the expression of luminal and mesenchymal markers in our

RNA-seq data. We found high variability among cell lines, with

some showing a decrease in some luminal markers (e.g.,

GATA3 in SUM185 cells and KRT18 in EMG3), while others had

an increase in mesenchymal genes (e.g., VIM in MFM223) (Fig-

ure S5J). Multicolor immunofluorescence for E-cadherin luminal

and vimentin mesenchymal markers also demonstrated highly

heterogeneous patterns regardless of exogenousPRRX1 expres-

sion (Figure 5F). Overexpression of PRRX1 (WT and dbm) signif-

icantly decreased cell migration in EMG3 and HCC3153 cells,

while invasion had no significant differences (Figure S5K). The

SUM185 cell line was neither migratory nor invasive.

To determine whether PRRX1 expression alters response to

paclitaxel, we assessed IC50 (half-maximal inhibitory concentra-

tion) at different time points after induction of PRRX1 (WT and

dbm) in cells. We found that, in the basal HCC3153 cell line, pro-

longed expression of both WT and dbm PRRX1 increased resis-

tance to paclitaxel, while the opposite was observed in luminal

SUM185 cells (Figure 5G), and no change was detected in

EMG3 or MFM223 cells (Figure S5L). These data suggest that

PRRX1 expression in TNBC can either positively or negatively

affect response to paclitaxel, depending on cellular context.

Overall, these data show that PRRX1 is sufficient to induce

certain mesenchymal features but that it is not essential for the

maintenance of mesenchymal tumor growth and phenotypes.

Transcriptional and genomic targets of PRRX1
To investigate mechanisms by which PRRX1 exerts its function,

we performed RNA-seq at different time points (days 5, 28, and

56) following its downregulation by shRNA in Hs578T and

TTC642 cell lines and 7, 14, and 21 days following exogenous

overexpression of WT or dbm PRRX1 in basal (HCC3153 and

EMG3) and luminal (SUM185 and MM223) TNBC lines (Table

S6). Metacore analysis of differentially expressed genes

following PRRX1 downregulation revealed limited overlap be-

tween TNBC and rhabdoid cell lines, with Hs578T cells showing

enrichment for transcription and translation-related networks,

while in TTC642 cells, there was upregulation of neurogenesis-

related processes and downregulation of immune-related path-

ways, including interferon signaling (Figure 6A; Table S2). Over-

expression of WT PRRX1 induced common transcriptional

changes characterized by enrichment for EMT, transforming

growth factor b (TGF-b), WNT, and NOTCH signaling and im-

mune-related functions (Figures 6B and 6C; Table S2). GSEA
log-normalized expression from the gene average are shown for each gene.

c TFs. Selected factors discussed in the text are highlighted for emphasis.

rcentages of variance explained by principal components 1 and 2 are shown in

indicated cell lines. Error bars represent mean ± SEM, n = 3 replicates, p values

lines expressing WT or dbm PRRX1 from mice with and without dox in the diet.

d t test.

om SUM185 and HCC3153 cell lines expressingWT PRRX1 frommice with and

ges are shown from different xenografts to illustrate intra-tumor heterogeneity.

clitaxel treatment and induction ofWT or dbmPRRX1 expression by dox for the

n = 3 replicates.



Figure 6. PRRX1 transcriptional targets

(A) Metacore network analysis for Hs578T and TTC642 cell line DEGs following PRRX1 downregulation using TET-inducible shRNA at the 5-day time point.

(B) Heatmap showing clustering of basal (EMG3 andHCC3153) and luminal (SUM185 andMFM223) cell lines overexpressingWT or dH3mutant PRRX1 based on

expression of the union of DEGs (lfc > 1) in each cell line following PRRX1 induction by doxycycline (dox).

(C) Metacore network analyses for upregulated DEGs in basal (EMG3 and HCC3153) and luminal (MFM223 and SUM185) lines overexpressing WT PRRX1

(network gene list shown in Table S2; Figure 6C). For each cell line, dox-treated PRRX1-overexpressing samples (at three time points) were compared with

untreated samples (corresponding to the same three time points) to identify DEGs.

(D) GSEA of the chemokine gene set in WT cell lines overexpressing PRRX1.
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using immune gene signatures followingWT PRRX1 overexpres-

sion also showed several significant enrichments, with the most

pronounced being the chemokine gene set observed in 3 of 4 cell

lines (Figure 6D; Table S5). The transcriptional changes induced

by downregulation or overexpression of PRRX1 imply that

PRRX1 perturbs cellular differentiation, promotes more stem

cell-like states, and modulates the immune environment through

both cell-autonomous and non-cell-autonomous mechanisms.

Next, we performed ChIP-seq for PRRX1 to identify its direct

genomic targets in mesenchymal TNBC, ATRT, and neuroblas-

toma lines and in basal TNBC as a control. We found that a sub-

set of PRRX1 binding sites was shared among all lines, but the

largest subsets of peaks were unique to Hs578T or TTC642,

the two cell lines with the highest endogenous PRRX1 levels
(Figures 7A, S6A, and S6B; Table S6).Metacore analysis showed

that gene sets 1 and 2, representing peaks unique to Hs578T and

TT642, respectively, had common enrichments for EMT and

WNT signaling. Common peaks between these two cell lines

(set 5) were enriched for the cell cycle (Figure S6C; Table S2).

These data suggest that PRRX1 has a tissue-dependent role in

regulating proliferation and stem cell pathways.

To investigate whether PRRX1 functions as a transcriptional

repressor or activator, we performed binding and expression

target analysis (BETA).27 We integrated PRRX1 ChIP-seq with

genes differentially expressed 5 days after shPRRX1 expression

in Hs578T and TTC642 cells. We found that PRRX1 may both

activate and repress transcripts in both cell lines, possibly due

to the late time point chosen for RNA-seq (Figure 7B). Networks
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Figure 7. PRRX1 genomic targets

(A) PRRX1 ChIP-seq peaks in the indicated cell lines from experiments with the larger number of peaks. All combinations represented in more than 1% of peaks

are shown.

(B) Cumulative fraction of genes up- or downregulated by PRRX1, plotted against rank of the regulatory potential score, from BETA of association between gene

expression changes after PRRX1 downregulation and PRRX1 chromatin occupancy for Hs578T and TTC642.

(C) Metacore network analysis for Hs578T and TTC642 for PRRX1 ChIP-seq-based BETA targets representing enrichments for up- and downregulated PRRX1

targets (network gene list shown in Table S2; Figure 7C).

(legend continued on next page)
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for the PRRX1 targets showed that BETA-inferred positive

PRRX1 targets were enriched in mesenchymal genes in

Hs578T cells and cell-cycle-related genes in TTC642 (Figure 7C).

We also analyzed what fractions of TNBC subtype-specifically

expressed genes were direct PRRX1 targets in Hs578T cells

(Table S6). We found that the proportion of overlapping genes

differed significantly across subtypes, with a significantly greater

proportion of mesenchymal subtype-specific genes being direct

PRRX1 targets (86%) compared with basal (72%) and luminal

(73%) subsets, suggesting that PRRX1 regulates mesenchymal

subtype-specific genes (Figure S6D).

The role of PRRX1 in establishing mesenchymal SE
landscapes
To determine whether PRRX1 can reprogram basal and luminal

SE landscapes to a mesenchymal one, we performed

H3K27ac ChIP-seq in HCC3153 basal and SUM185 luminal

TNBC cell lines following expression of WT or dbm PRRX1 for

7 or 42 days and quantified H3K27ac expression in SEs previ-

ously identified in parental cells. We found that long-term

(42 days) expression of both WT and dbm PRRX1 in HCC3153

cells was sufficient to induce a more mesenchymal cell state,

defined based on MOFA F3 scores, while no changes in F2,

F3, or F6 scores were detected in luminal SUM185 cells (Figures

7D and S6E).

To explore PRRX1-induced chromatin changes in more detail,

we assessed the H3K27ac signal in the topmost variable SEs

among samples. In the HCC3153 cell line, the most pronounced

difference was between PRRX1 overexpressing (+doxycycline

[dox]) and non-expressing (�dox) samples, with lesser variability

observed between long and short time points and between WT

and dbm PRRX1 (Figure 7E). In SUM185 cells, only WT PRRX1

induced distinct changes in SE H3K27ac signal, especially at

longer time points (Figure S6F). Quantification of these SE

changes further highlighted marked differences between the

two cell lines; in SUM185 cells, only WT PRRX1 induced

changes, and there was no difference between short- and

long-term treatment (Figures 7F and S6F; Table S7). In

HCC3153 cells, the WT and dbm PRRX1 induced the same

magnitude of changes and more pronounced changes at later

time points (Figures 7E and 7F). These observations suggest

that PRRX1 can function both as an activator and repressor,

which follows our BETA (Figure 7B); that it may modulate tran-

scription and SE patterns via both direct and indirect DNA bind-

ing; and that PRRX1-induced changes in luminal SUM185 cells

require direct PRRX1 DNA binding, possibly due to the lack of

certain PRRX1-interacting TFs.

Analysis of the H3K27ac signal in SEs associated with TNBC

subtype-specific TFs showed a pronounced gain in mesen-

chymal TFs in basal HCC3153 cells, with a minimal increase in
(D) Scatterplot depicting MOFA F2 and F3 scores for each sample, calculated ba

represent HCC3153 and SUM185 samples from the PRRX1 overexpression H3K

(E) Heatmap showing clustering of HCC3153PRRX1-overexpressing samples and

SEs.

(F) Bar plot showing counts of differentially acetylated SE regions under WT and

points.

(G) Heatmap of SE H3K27ac signal for TNBC subtype-specific TFs in HCC3153
luminal SUM185 cells (Figures 7G and S6G). PRRX1 was among

the mesenchymal TFs that gained signal in PRRX1-overexpress-

ing HCC3153 cells, implying that PRRX1 may positively autore-

gulate itself (Figure 7G). We also investigated overlaps between

significantly gained and lost SEs in both cell lines and identified

shared and cell-line-specific long-term gained and lost regions

(Figure S6H). We defined long-term gains and losses induced

by WT PRRX1 in HCC3153 cells as indirect when they were

also observed in HCC3153 cells expressing dbm PRRX1, while

changes specific to WT PRRX1 were classified as direct. We

found that long-term WT PRRX1-induced indirect changes in

HCC3153 cells were significantly more likely to be observed in

SUM185 cell than direct changes (Figure S6H). Given the depen-

dence of PRRX1-induced SE changes in SUM185 onWT PRRX1

(Figure 7F), this implies that some changes gain DNA depen-

dence in SUM185 cells. By comparing DNA sequences of indi-

rect and direct regions in HCC3153 cells, we identified putative

PRRX1 co-binding TFs in HCC3153 long-term gained and lost

regions.We found that, as a group, putative co-binding TFs iden-

tified from gained regions had lower expression in SUM185

compared with HCC3153 (Figure S6I). The lower expression of

these TFs, which include FOXI1, ETS2, and TWIST1, may play

a role in the muted changes observed in dbm-expressing

SUM185 cells. These data highlight the importance of cell-

type-specific TFs in establishing cellular states and epigenetic

landscapes.

Clinical relevance of PRRX1 in TNBC
Last, we investigated the clinical relevance of PRRX1 activity in

primary TNBC samples. In both the METABRIC and TCGA data-

sets, PRRX1 expression differs among basal, luminal, and

mesenchymal TNBCs and is higher in mesenchymal TNBC

than in the other two subtypes (Figure S7A). We also analyzed

the expression of a mesenchymal RNA target (MRT) signature

derived from our integrated analysis of Hs578T PRRX1-ChIP-

seq and RNA-seq data (STAR Methods; Table S6). We found

that correlations between PRRX1 expression and expression

of its putative positive targets were higher than correlations be-

tween PRRX1 expression and expression of its putative negative

targets in the TCGA cohort (Figure S7B), and we observed the

same, although non-significant, trend in the METABRIC data

(Figure S7B). We also investigated the Hs578T-specific RNA tar-

gets (HsRT) and noted the same patterns in both cohorts (Fig-

ure S7C). We also found that the expression of the MRT target

gene set varied between TNBC subtypes, assigned to samples

using cell line-derived signatures, in the METABRIC datasets,

with significantly higher expression in mesenchymal than in

luminal samples in both cohorts (Figure S7D). However, refined

clustering of the samples showed that PRRX1 or MRT target

expression did not differ significantly between mesenchymal
sed on SE H3K27ac signal. Red- and blue-outlined shapes within dotted lines

27ac experiment, respectively.

corresponding controls based onH3K27ac signal in the top 20%most variable

dbm PRRX1 overexpression in SUM185 and HCC3153 at short and long time

PRRX1 overexpression samples and corresponding controls.
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low and high samples (Figure S7E). These results support our hy-

pothesis that PRRX1 acts as a clinically relevant transcriptional

regulator in mesenchymal TNBC.

To further investigate the clinical relevance of our findings, we

tested for associations between TNBC subtype and PRRX1 and

immune-related gene expression signatures28 (Table S5). We

found that 8 of 24 signatures were significantly positively associ-

ated with PRRX1 expression in at least one of the two cohorts,

with an association that remained significant in the other cohort

(Figure S7F and S7G; Table S5). In the TCGA cohort, a single

signature was significantly differentially expressed between

TNBC types and significantly more highly expressed in the

mesenchymal subtype compared with the other two subtypes.

In the METABRIC cohort, 10 such signatures were significantly

overexpressed in mesenchymal TNBC after accounting for mul-

tiple testing, including 7 of 8 signatures with a validated signifi-

cant association with PRRX1 expression and an additional three

signatures (Figure S7H; Table S5). For 3 of 10 of these mesen-

chymal-specific immune signatures in the METABRIC cohort,

the same trends were statistically significant in the TCGA cohort,

but the effect sizes were rather small in both cohorts (Figure S7H;

Table S5). Of these three signatures, only TGF-b family members

had significantly different expression between mesenchymal-

high and mesenchymal-low samples in TCGA or METABRIC

data, and this signature was more highly expressed in mesen-

chymal-high samples for bothMETABRICandTCGA (FigureS7I).

Taken together, our results suggest that there is a link between

PRRX1 expression and immune activity that may contribute to

shaping the immune microenvironment of mesenchymal TNBC.

DISCUSSION

Characterization of mechanisms underlying TNBC heterogeneity

may guide the design of more effective therapies. Here, we per-

formed comprehensive multiomics and phenotypic character-

ization of both inter- and intra-tumor heterogeneity in TNBC to

identify key regulators of disease processes that may reveal

therapeutic targets and markers for patient stratification.

RNA-seq confirmed luminal, basal, and mesenchymal sub-

types that have been described previously, highlighting the

robustness of transcriptional differences in TNBC.2–4,29 Similar

to prior studies,2–4,29 we noted that, even within basal and

mesenchymal subtypes, there are further subclusters (e.g.,

BL1 and BL2), but we did not investigate these in more detail.

SE analyses based on H3K27ac ChIP-seq data largely corre-

lated with the three main transcriptional subtypes, in line with

SEs playing key roles in cell-type-specific transcriptional pat-

terns.7,30 Several recent studies have reported the identification

of TNBC-specific SEs (e.g., FOXC1, MET, and BAMBI) and have

shown that some of these SE-associated genes reflect depen-

dencies in TNBC.31,32 FOXC1 and MET were also among the

top basal and mesenchymal subtype-specific SEs in our data-

set, while BAMBI was among the top variably expressed genes

but did not show significant TNBC subtype specificity.

Quantitative analyses of histone modification profiles revealed

a distinct pattern of variability largely driven by H3K27ac,

H3K27me3, and H4K20me3, and H4 acetylation marks associ-

ated with active (H3K27ac) and repressive (H3K27me3) chro-
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matin. The roles of H3K27ac and H3K27me3 in cellular differen-

tiation and epigenetic states have been extensively

characterized both during normal development and cancer.33

Modifiers of these histone marks, including histone H3 acetyl

transferases (e.g., P300) and deacetylases (HDACs), and

H3K27me3 transferase (EZH2) and demethylase (KDM6A) and

readers of H3K27ac (BET bromodomain proteins) have been

explored as therapeutic targets in breast and other cancer

types.34 The sources and consequences of histone H4modifica-

tions are poorly defined, even though they account for nearly half

of all histone modification events.35 Our finding that H4K20me3

is the topmost variable histone mark both among and within

TNBC tumors highlights a potential role of histone H4 in TNBC

biology that is worth further investigations.

Using MOFA, we defined the landscape of TNBC cell line

epigenetic and metabolic heterogeneity. We identified 8 biolog-

ical factors and associated multiomics signatures (3 factors

linked to transcriptional subtype [F2, F3, and F6] and 5 sub-

type-independent factors [F1, F4, F5, F7, and F8]) and found

that 6 of the 8 factors (F1–F6) were validated in two independent

primary TNBC cohorts. Further interrogation of the mechanisms

underpinning these factors will be an important area for

future work.

A main goal of our study was to identify key drivers of TNBC

subtypes. Because TFs orchestrate transcriptional and SE land-

scapes, we focused on TFs associated with subtype-specific

expression and SEs. In addition to confirming the expression

of known luminal, basal, and mesenchymal TFs, we identified

several previously uncharacterized TFs in each subtype. Mesen-

chymal TNBC represents the least differentiated subtype, sug-

gesting that these tumors may originate from an early stem/pro-

genitor cell or lost epithelial features during tumorigenesis. Our

finding that mesenchymal TNBC is more similar to ATRT and

mesenchymal neuroblastoma than to other breast cancer sub-

types supports this hypothesis. We found that the PRRX1 TF is

a shared driver of these mesenchymal tumors regardless of tis-

sue of origin, highlighting the importance of TFs in establishing

cell states. Based on our data, PRRX1 appears to be a trigger

of mesenchymal state but not to be required for its maintenance

or tumor growth. The PRRX1-associated TF interaction network,

including several positive feedback loops, might maintain

mesenchymal programs even without PRRX1.

Overall, our study is an excellent resource because it provides

highly usable data for both scientific and clinical communities,

thus providing opportunities for follow-up studies as a future

direction.

Limitations of the study
The multiomics profiling was performed on TNBC cell lines but

validated in the TCGA and METABRIC TNBC cohorts. While

the proportion of variance explained by the MOFA model was

greater than 50% for some datasets, the proportion of variance

explained by the model was lower for the metabolomics and his-

tone mass spectrometry datasets. While some of the unex-

plained variance may be due to factors unrelated to TNBC

biology, including measurement error, we cannot rule out the

possibility that some of this unexplained variability relates to

TNBC biology. Applying similar approaches to larger multiomics
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datasets is expected to shed light on this possibility and is an

area for future work. Additionally, experimental functional valida-

tion will be important to confirm the roles of the putative PRRX1

co-binding TFs identified using computational analyses.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

B Human breast tumor samples

B Breast cancer cell lines

B Animal model

d METHOD DETAILS

B Xenograft assays

B ChIP-seq

B RNA-seq

B DNA methylation

B Mass spectrometry analysis of histone modifications

B Metabolomic profiling

B Mass cytometry (CyTOF)

B Generation of TET-doxycycline inducible PRRX1

knockdown and overexpression cells

B Cellular proliferation assays

B Antibodies and inhibitors

B Immunoblotting

B Immunofluorescence staining

B Immunohistochemistry

B Small molecule inhibitor screen

B High Throughput BH3 profiling

B Single cell RNA-seq

d QUANTIFICATION AND STATISTICAL ANALYSIS

B In vitro and in vivo data

B Breast cancer cohorts

B Additional cell line data

B H3K27ac ChIP-seq analysis

B RNA-seq analysis

B DNA methylation analysis

B Mass spectrometry analysis of histone modifications

B Metabolomics analysis

B Drug screen data

B PRRX1 ChIP-seq analysis

B Hierarchical clustering of cell lines

B Transcriptomic heterogeneity estimation using bulk

RNA-seq

B Analysis of correlations between gene expression,

H3K27ac expression and DNA methylation across

genes

B Differential H3K27ac and gene expression analysis

B MOFA data integration analysis

B MOFA scaled weights
B Signature-based assignment of patient samples to

TNBC types

B MOFA factor scores for patient samples

B Alternate clustering-based assignment of METABRIC

patient samples to TNBC types

B Classification of mesenchymal tumors into mesen-

chymal-high and mesenchymal-low groups

B CIBERSORTx analysis

B Survival analysis

B Definition of transcription factors

B Hierarchical clustering of cell lines by expression of

subtype-specific transcription factors

B RNA-seq principal component analysis

B Hierarchical clustering of PRRX1 over-expression

RNA-seq samples

B Immune signature gene set enrichment analysis in

PRRX1 over-expression RNA-seq data

B Assessment of PRRX1 expression levels in cell lines

used for PRRX1 ChIP-seq

B PRRX1 targets

B ChIP-seq heatmaps

B PRRX1 target signature scores and immune signature

scores for patient samples

B MOFA factor scores for PRRX1 over-expression sam-

ples

B Hierarchical clustering of PRRX1 over-expression

H3K27ac samples

B Hierarchical clustering of PRRX1 over-expression

H3K27ac based on subtype-specific transcription fac-

tors

B Identification and analysis of PRRX1 putative co-bind-

ing TF’s

B CyTOF analysis

B CyTOF clustering analysis

B scRNA-seq analysis

B MOFA factor scores for scRNA-seq data

B Clustering of single cells by MOFA factor scores

B TNBC subtype signature analysis in scRNA-seq data

B Transcriptomic heterogeneity estimation using single-

cell data

B Transcriptomic heterogeneity estimation simulations
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2023.113564.
ACKNOWLEDGMENTS

We thank members of our laboratories for critical reading of the manuscript

and discussions. We thank Rani George for providing the PRRX1 expression

constructs. We thank the Dana-Farber Cancer Institute Molecular Biology

Core Facility for outstanding sequencing service. This research was sup-

ported by Department of Defense Breast Cancer Research Program

W81XWH-18-1-0027 (to B.J.); National Cancer Institute PSOC U54

CA193461 (to F.M. and K.P.), R35 CA197623 (to K.P.), P01 CA250959 (to

K.P., M.B., P.S., H.L., and D.D.), and R01CA251599 (to K.W.W.); DF/HCC

SPORE P50CA168504 (to K.P., P.S., and D.D.), and the Ludwig Center at

Harvard (to K.P., F.M., and M.B). The content is solely the responsibility of
Cell Reports 42, 113564, December 26, 2023 17

https://doi.org/10.1016/j.celrep.2023.113564
https://doi.org/10.1016/j.celrep.2023.113564


Resource
ll

OPEN ACCESS
the authors and does not necessarily represent the official views of the Na-

tional Institutes of Health/NCI.

AUTHOR CONTRIBUTIONS

Conceptualization, B.J. and K.P.; methodology, B.J. and D.T.; analyses, D.T.,

B.J. N.W.H., X.Q., M.B.E., J.Y.G., M.P., and A.T.; investigation, B.J., A.F.,

L.E.S., K.M., J.P., M.A., K.H., R.W., G.P., S.S., B.D., A.G., V.W.D., A.S.,

S.B.E., R.V., A.F.-T., M.S., J.A., and K.G.; resources, K.W.W., A.G.L., and

D.D.; writing – original draft, B.J., D.T., F.M., and K.P.; writing – review & edit-

ing, all authors; funding acquisition, B.J., K.P., and F.M.; supervision, K.P.,

F.M., J.D.J., P.S., M.B., M.P., H.W.L., A.G.L., Z.T.H., and K.W.W.

DECLARATION OF INTERESTS

The following authors report current employment: Eli Lilly (B.J.), Shasqi, Inc

(M.A.), GenieUsGenomics (A.T.), Morrison & Foerster LLP (A.G.),

AstraZeneca (M.B.E. and L.E.S.), Odyssey Therapeutics (J.D.J.). K.P. serves

on the Scientific Advisory Boards (SABs) of Novartis, Ideaya Biosciences,

and Scorpion Therapeutics; holds equity options in Scorpion Therapeutics

and Ideaya Biosciences; and receives sponsored research funding from No-

vartis, where she consults. F.M. is a cofounder of and has equity in Harbinger

Health, has equity in Zephyr AI, and consults for Harbinger Health and Zephyr

AI. She is on the board of directors of Exscientia Plc. She declares that none of

these relationships are directly or indirectly related to the content of this manu-

script. P.S. is a consultant for Novartis, Genovis, Guidepoint, The Planning

Shop, ORIC Pharmaceuticals, Cedilla Therapeutics, Syros Pharmaceuticals,

Blueprint Medicines, Curie Bio, Differentiated Therapeutics, Excientia, Liga-

ture Therapeutics, Merck, Redesign Science, Sibylla Biotech, and Exo Thera-

peutics; he receives research funding from Novartis. A.G.L. serves on the SAB

of Flash Therapeutics, Zentalis Pharmaceuticals, and Trueline Therapeutics

and consults for AbbVie. M.B. receives research funding from Novartis, where

he also serves on the SAB and acts as a consultant. He is amember of the SAB

for Kronos Bio andGV20 Therapeutics and holds equity in both companies. He

also serves on the SAB for FibroGen and is a consultant for Belharra Therapeu-

tics. K.W.W. serves on the SAB of TScan Therapeutics, SQZ Biotech, Bisou

Bioscience Company, DEM BioPharma, and Nextechinvest; receives spon-

sored research funding from Novartis; and is a co-founder, stockholder, and

advisory board member of Immunitas Therapeutics. D.D. receives research

support from Canon, Inc. H.W.L. receives research funding from Novartis.

Received: June 1, 2023

Revised: October 5, 2023

Accepted: November 22, 2023

Published: December 14, 2023

REFERENCES

1. Garrido-Castro, A.C., Lin, N.U., and Polyak, K. (2019). Insights into Molec-

ular Classifications of Triple-Negative Breast Cancer: Improving Patient

Selection for Treatment. Cancer Discov. 9, 176–198.

2. Lehmann, B.D., Bauer, J.A., Chen, X., Sanders, M.E., Chakravarthy, A.B.,

Shyr, Y., and Pietenpol, J.A. (2011). Identification of human triple-negative

breast cancer subtypes and preclinical models for selection of targeted

therapies. J. Clin. Invest. 121, 2750–2767.

3. Lehmann, B.D., Jovanovi�c, B., Chen, X., Estrada, M.V., Johnson, K.N.,

Shyr, Y., Moses, H.L., Sanders, M.E., and Pietenpol, J.A. (2016). Refine-

ment of Triple-Negative Breast Cancer Molecular Subtypes: Implications

for Neoadjuvant Chemotherapy Selection. PLoS One 11, e0157368.

4. Lehmann, B.D., Colaprico, A., Silva, T.C., Chen, J., An, H., Ban, Y., Huang,

H., Wang, L., James, J.L., Balko, J.M., et al. (2021). Multi-omics analysis

identifies therapeutic vulnerabilities in triple-negative breast cancer sub-

types. Nat. Commun. 12, 6276.

5. Su, Y., Subedee, A., Bloushtain-Qimron, N., Savova, V., Krzystanek, M.,

Li, L., Marusyk, A., Tabassum, D.P., Zak, A., Flacker, M.J., et al. (2015).
18 Cell Reports 42, 113564, December 26, 2023
Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast

Cancer. Cell Rep. 11, 1549–1563.

6. Lovén, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Brad-

ner, J.E., Lee, T.I., and Young, R.A. (2013). Selective inhibition of tumor on-

cogenes by disruption of super-enhancers. Cell 153, 320–334.

7. Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey,

M.H., Rahl, P.B., Lee, T.I., and Young, R.A. (2013). Master transcription

factors and mediator establish super-enhancers at key cell identity genes.

Cell 153, 307–319.

8. Cancer Genome Atlas Network (2012). Comprehensive molecular por-

traits of human breast tumours. Nature 490, 61–70.

9. Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning,

M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012). The

genomic and transcriptomic architecture of 2,000 breast tumours reveals

novel subgroups. Nature 486, 346–352.

10. Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J.C.,

Buettner, F., Huber, W., and Stegle, O. (2018). Multi-Omics Factor Anal-

ysis-a framework for unsupervised integration of multi-omics data sets.

Mol. Syst. Biol. 14, e8124.

11. Argelaguet, R., Arnol, D., Bredikhin, D., Deloro, Y., Velten, B., Marioni, J.C.,

and Stegle, O. (2020). MOFA+: a statistical framework for comprehensive

integration of multi-modal single-cell data. Genome Biol. 21, 111.

12. Nikolsky, Y., Ekins, S., Nikolskaya, T., and Bugrim, A. (2005). A novel

method for generation of signature networks as biomarkers from complex

high throughput data. Toxicol. Lett. 158, 20–29.

13. Sengupta, S., and George, R.E. (2017). Super-Enhancer-Driven Transcrip-

tional Dependencies in Cancer. Trends Cancer 3, 269–281.

14. Nikolsky, Y., Nikolskaya, T., and Bugrim, A. (2005). Biological networks

and analysis of experimental data in drug discovery. Drug Discov. Today

10, 653–662.

15. van de Wetering, M., Barker, N., Harkes, I.C., van der Heyden, M., Dijk,

N.J., Hollestelle, A., Klijn, J.G., Clevers, H., and Schutte, M. (2001). Mutant

E-cadherin breast cancer cells do not display constitutive Wnt signaling.

Cancer Res. 61, 278–284.

16. Bendall, S.C., Simonds, E.F., Qiu, P., Amir, E.a.D., Krutzik, P.O., Finck, R.,

Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., et al. (2011). Single-

cell mass cytometry of differential immune and drug responses across a

human hematopoietic continuum. Science 332, 687–696.

17. Samusik, N., Good, Z., Spitzer, M.H., Davis, K.L., and Nolan, G.P. (2016).

Automated mapping of phenotype space with single-cell data. Nat.

Methods 13, 493–496.

18. Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y.,

Hoang, C.D., Diehn, M., and Alizadeh, A.A. (2015). Robust enumeration

of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457.

19. Ross, S.E., McCord, A.E., Jung, C., Atan, D., Mok, S.I., Hemberg, M., Kim,

T.K., Salogiannis, J., Hu, L., Cohen, S., et al. (2012). Bhlhb5 and Prdm8

form a repressor complex involved in neuronal circuit assembly. Neuron

73, 292–303.

20. Khaled, W.T., Choon Lee, S., Stingl, J., Chen, X., Raza Ali, H., Rueda,

O.M., Hadi, F., Wang, J., Yu, Y., Chin, S.F., et al. (2015). BCL11A is a tri-

ple-negative breast cancer gene with critical functions in stem and pro-

genitor cells. Nat. Commun. 6, 5987.

21. Euhus, D.M., Timmons, C.F., and Tomlinson, G.E. (2002). ETV6-NTRK3–

Trk-ing the primary event in human secretory breast cancer. Cancer Cell

2, 347–348.

22. Snel, B., Lehmann, G., Bork, P., and Huynen, M.A. (2000). STRING: a web-

server to retrieve and display the repeatedly occurring neighbourhood of a

gene. Nucleic Acids Res. 28, 3442–3444.

23. Jozwik, K.M., and Carroll, J.S. (2012). Pioneer factors in hormone-depen-

dent cancers. Nat. Rev. Cancer 12, 381–385.

24. vanGroningen, T., Koster, J., Valentijn, L.J., Zwijnenburg, D.A., Akogul, N.,

Hasselt, N.E., Broekmans, M., Haneveld, F., Nowakowska, N.E., Bras, J.,

http://refhub.elsevier.com/S2211-1247(23)01576-0/sref1
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref1
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref1
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref2
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref2
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref2
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref2
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref3
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref3
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref3
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref3
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref3
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref4
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref4
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref4
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref4
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref5
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref5
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref5
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref5
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref6
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref6
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref6
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref7
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref7
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref7
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref7
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref8
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref8
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref9
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref9
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref9
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref9
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref10
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref10
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref10
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref10
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref11
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref11
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref11
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref12
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref12
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref12
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref13
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref13
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref14
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref14
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref14
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref15
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref15
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref15
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref15
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref16
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref16
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref16
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref16
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref17
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref17
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref17
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref18
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref18
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref18
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref19
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref19
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref19
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref19
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref20
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref20
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref20
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref20
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref21
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref21
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref21
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref22
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref22
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref22
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref23
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref23
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref24
http://refhub.elsevier.com/S2211-1247(23)01576-0/sref24


Resource
ll

OPEN ACCESS
et al. (2017). Neuroblastoma is composed of two super-enhancer-associ-

ated differentiation states. Nat. Genet. 49, 1261–1266.

25. Sengupta, S., Das, S., Crespo, A.C., Cornel, A.M., Patel, A.G., Mahade-

van, N.R., Campisi, M., Ali, A.K., Sharma, B., Rowe, J.H., et al. (2022).

Mesenchymal and adrenergic cell lineage states in neuroblastoma

possess distinct immunogenic phenotypes. Nat. Cancer 3, 1228–1246.

26. Torchia, J., Golbourn, B., Feng, S., Ho, K.C., Sin-Chan, P., Vasiljevic, A.,

Norman, J.D., Guilhamon, P., Garzia, L., Agamez, N.R., et al. (2016). Inte-

grated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic

Targets in CNS Rhabdoid Tumors. Cancer Cell 30, 891–908.

27. Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer,

C.A., Zhang, Y., and Liu, X.S. (2013). Target analysis by integration of tran-

scriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515.

28. Gil Del Alcazar, C.R., Huh, S.J., Ekram, M.B., Trinh, A., Liu, L.L., Beca, F.,

Zi, X., Kwak, M., Bergholtz, H., Su, Y., et al. (2017). Immune Escape in

Breast Cancer During In Situ to Invasive Carcinoma Transition. Cancer

Discov. 7, 1098–1115.

29. Wang, D.Y., Jiang, Z., Ben-David, Y., Woodgett, J.R., and Zacksenhaus,

E. (2019). Molecular stratification within triple-negative breast cancer sub-

types. Sci. Rep. 9, 19107.

30. Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-André, V., Sigova, A.A.,
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50. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and

Tamayo, P. (2015). TheMolecular Signatures Database (MSigDB) hallmark

gene set collection. Cell Syst. 1, 417–425.

51. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tam-
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Rabbit polyclonal anti-H3K27Ac Diagenode Cat#C15410196 RRID: AB_2637079
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Mouse monoclonal anti-CD24 (153Eu) Biolegend Cat# 311102; RRID: AB_314851

Mouse monoclonal anti-CDK1 (154Sm) Biolegend Cat# 626901; RRID: AB_2074779

Rabbit monoclonal anti-CDK6 (155Gd) Cell Signaling Technology Cat# 13331; RRID:AB_2721897

Rabbit monoclonal anti-p63 (158Gd) Abcam Cat# ab124762; RRID: AB_10971840

Rabbit monoclonal anti-TCF7 (159Tb) Cell Signaling Technology Cat# 2203; RRID: AB_2199302

Rabbit monoclonal anti-AR (160Gd) Cell Signaling Technology Cat# 5153; RRID: AB_10691711

Mouse monoclonal anti-Cyclin A (161Dy) BD Biosciences Cat# 554175; RRID: AB_395286

Mouse monoclonal anti-Ki-67 (162Dy) BD Biosciences Cat# 550609; RRID: AB_393778

Mouse monoclonal anti-SMA (163Dy) Thermo Fisher Scientific Cat# 14-9760-82; RRID: AB_2572996

Mouse monoclonal anti-cPARP (164Dy) BD Biosciences Cat# 552596; RRID: AB_394437

Rabbit monoclonal anti-Vimentin (165Ho) Cell Signaling Technology Cat# 5741; RRID: AB_10695459

Rat monoclonal anti-GATA-3 (166Er) eBioscience Cat# 14-9966-80; RRID: AB_1210520

Rabbit monoclonal anti-p21 (167Er) Cell Signaling Technology Cat# 2947; RRID: AB_823586

Rabbit monoclonal anti-phospho-AKT Cell Signaling Technology Cat# 4060; RRID: AB_2315049

Rabbit monoclonal anti-phospho-STAT3 Cell Signaling Technology Cat# 9145; RRID: AB_2491009

Rabbit monoclonal anti-EGFR (170Er) Cell Signaling Technology Cat# 4267; RRID: AB_2246311

Rabbit monoclonal anti-phospho-SMAD2 Cell Signaling Technology Cat# 8828; RRID: AB_2631089

Rabbit monoclonal anti-ERa (172Yb) Cell Signaling Technology Cat# 13258; RRID: AB_2632959

Rat monoclonal anti-CD49f (173Yb) Biolegend Cat# 313602; RRID: AB_345296

Rabbit monoclonal anti-phospho-STAT5 Cell Signaling Technology Cat# 4322; RRID: AB_10548756

Rabbit monoclonal anti-phospho-S6 Cell Signaling Technology Cat# 4858; RRID: AB_916156

Mouse monoclonal anti-CK8/18 (176Yb) Cell Signaling Technology Cat# 4546; RRID: AB_2134843

Rabbit polyclonal anti-histone H4K20me3 Abcam Cat# ab9053; RRID: AB_306969

Biological samples

HCI-001 human patient-derived xenograft Alana Welm, Huntsman Cancer Institute N/A

(Continued on next page)
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HCI-002 human patient-derived xenograft Alana Welm, Huntsman Cancer Institute N/A

HCI-009 human patient-derived xenograft Alana Welm, Huntsman Cancer Institute N/A

HCI-010 human patient-derived xenograft Alana Welm, Huntsman Cancer Institute N/A

2147-TG5 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

3936-TG5 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

4013-TG6 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

4195-TG5 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

4272-TG5 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

5998-TG5 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

BCM-2665 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

BCM-3107 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

BCM-3611 human patient-derived xenograft Michael Lewis, Baylor College of Medicine N/A

T272X human patient-derived xenograft Polyak Lab, DFCI N/A

IDC50X human patient-derived xenograft Polyak Lab, DFCI N/A

Chemicals, peptides, and recombinant proteins

Galunisertib, LY2157299 (TGF-beta) Selleckchem S2230

Xav939 (Wnt/beta-catenin) Selleckchem S1180

LGK-974 (Wnt/beta-catenin) Selleckchem S7143

Vismodegib (GDC-0449) (Hedgehog) Selleckchem S1082

Sonidegib (Erismodegib,

NVP-LDE225) (Hedgehog)

Selleckchem S2151

NVP-BHG712 (Ephrin) Selleckchem S2202

BGJ398 (NVP-BGJ398) (FGFR) Selleckchem S2183

Vorinostat (SAHA, MK0683) (HDACs1/3) Selleckchem S1047

Tretinoin (Retinoids) Selleckchem S1653

MK-8617 (Pan-HIF) Selleckchem S8443

Ruxolitinib, INC018424 (JAK) Selleckchem S1378

A-1155463 (BCL-xl) Selleckchem S7800

ML324 (KDM4) Selleckchem S7296

GSK J1 (KDM6A/B) Selleckchem S7581

Verteporfin (YAP/TEAD) Selleckchem S1786

A-485 (p300/CBP) MedChemExpress HY-107455

Critical commercial assays

ThruPLEX DNA-seq 48S Kit Rubicon R400427

Infinium HumanMethylation 450K BeadChIP Illumina WG-314-1003

Deposited data

All raw genomic data GEO GSE202776

Raw histone mass spectrometry data MassIVE (http://massive.ucsd.edu) MSV000091071

Code associated with this manuscript This manuscript Zenodo: https://doi.org/10.5281/

zenodo.10139754

Experimental models: Cell lines

Human: BT549 cell line ATCC HTB-122

Human: CAL120 cell line DSMZ ACC 459

Human: CAL148 cell line DSMZ ACC 460

Human: CAL51 cell line DSMZ ACC 302

Human: CAL851 cell line DSMZ ACC 440

Human: DU4475 cell line ATCC HTB-123

Human: EMG3 cell line Eva Matou, Czechia N/A

Human: FCIBC02 cell line Massimo Cristofanilli, Jefferson University N/A

(Continued on next page)
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Human: GIMEN cell line Kimberly Stegmaier,

Dana-Farber Cancer Institute

N/A

Human: HCC1143 cell line ATCC CRL-2321

Human: HCCC1187 cell line ATCC CRL-2322

Human: HCC1395 cell line ATCC CRL-2324

Human: HCC1569 cell line ATCC CRL-2330

Human: HCC1806 cell line ATCC CRL-2335

Human: HCC1937 cell line ATCC CRL-2336

Human: HCC2157 cell line ATCC CRL-2340

Human: HCC2185 cell line Adi Gazdar, UT Southwestern N/A

Human: HCC3153 cell line Adi Gazdar, UT Southwestern N/A

Human: HCC38 cell line ATCC CRL-2314

Human: HCC70 cell line ATCC CRL-2315

Human: HDQP1 cell line DSMZ ACC 494

Human: Hs578 cell line ATCC HTB-126

Human: LS cell line DSMZ ACC 675

Human: MDAMB157 cell line ATCC HTB-24

Human: MDAMB231 cell line ATCC HTB-26

Human: MDAMB436 cell line ATCC HTB-130

Human: MDAMB453 cell line ATCC HTB-131

Human: MDAMB468 cell line ATCC HTB-132

Human: MFM223 cell line DSMZ ACC 422

Human: PMC42 cell line Robert H. Whitehead, Melbourne, Australia N/A

Human: SUM102 cell line Stephen Ethier, University of Michigan N/A

Human: SUM1315 cell line Stephen Ethier, University of Michigan N/A

Human: SUM149 cell line Stephen Ethier, University of Michigan N/A

Human: SUM159 cell line Stephen Ethier, University of Michigan N/A

Human: SUM185 cell line Stephen Ethier, University of Michigan N/A

Human: SUM229 cell line Stephen Ethier, University of Michigan N/A

Human: TT642 cell line Charles Roberts, Dana-Farber

Cancer Institute

N/A

Human: UACC3199 cell line University of Arizona N/A

Experimental models: Organisms/strains

NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) Taconic Biosciences N/A

NOD (NOD.Cg-Prkdc< scid>

Il2rg< tm1Wjl> Tg

(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ

Jackson Laboratory N/A

Recombinant DNA

shERWOOD Lentiviral Inducible

shRNA (n = 3) for PRRX1:

Transomic Technologies cat# TLHSU2300-5396

1. ULTRA-3340261-pZIP-

TRE3G-ZsGreen-Puro

Transomic Technologies cat# TLHSU2300-5396

2. ULTRA-3340262-pZIP-

TRE3G-ZsGreen-Puro

Transomic Technologies cat# TLHSU2300-5396

3. ULTRA-3340265-pZIP-

TRE3G-ZsGreen-Puro

Transomic Technologies cat# TLHSU2300-5396

PAX2 packaging plasmid Addgene cat#35002

pMD2.G envelope plasmid Addgene cat#12259

WT and MUT (DH1) PRRX1

lentiviral vectors

Sengupta et al.25 gift from Rani George’s lab
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Kornelia

Polyak, Dana-Farber Cancer Institute, 450 Brookline Ave., SM1070B, Boston, MA 02215, USA. E-mail: kornelia_polyak@dfci.

harvard.edu; tel: 617-632-2106.

Materials availability
Hs578T, SUM185, EMG3, and MFM223, and TTC642 cell line derivatives generated using Tet-doxycycline inducible system will be

made available upon request and following the execution of an MTA.

Data and code availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplemental Information. All raw

genomic data was deposited to GEO under accession number: GSE202776. Processed histone mass spectrometry, metabolomics,

drug screen, and BH3 profiling data is provided as supplementary information. Additional metadata files and processed data files

used in the original code have been deposited at (https://figshare.com/s/2f077f7838fb5f6e8d35). All code used to analyze genomics

data and produce the corresponding figures is available on the GitHub repository https://github.com/daniel-temko/TNBCEpiHet

(https://doi.org/10.5281/zenodo.10139754). The raw mass spectrometry data have been deposited in the public proteomics repos-

itory MassIVE (http://massive.ucsd.edu) using the identifier: MSV000091071.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human breast tumor samples
Human breast cancer samples were collected using protocol #93-085 approved by the DF/HCC Institutional Review Board, informed

consent was obtained from all patients, and samples were de-identified prior to transport to the lab. Tumor tissues were dissociated

to single cells by mechanical chopping with razor blades followed by digestion at 37�C in DMEM/F12 with 2 mg/mL bovine serum

albumin (BSA), 2 mg/mL collagenase type IV, and 2 mg/mL hyaluronidase while stirring for 3–4 h. Cells were filtered sequentially

through 500, 100, and 70-mm mesh, washed in DMEM/F12 with 5% fetal bovie serum (FBS), frozen in DMEM/F12 with 5% FBS

and 10% DMSO, and stored in liquid nitrogen for subsequent xenograft studies. Tissue microarray of human TNBC (HTMA 240)

was generated from tumors collected using tissue banking protocol #93-085 approved by the DF/HCC Institutional Review Board,

informed consent was obtained from all patients.

Breast cancer cell lines
Breast cancer cell lines were obtained from ATCC, DMZE, or generously provided by multiple principal investigators (please see key

resources table for details) and cultured following the provider’s recommendations. The identity of the cell lines was confirmed based

on STR and exome-seq analyses. Cells were regularly tested for mycoplasma.

Animal model
For knockdown xenograft assays, female NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) mice were purchased from Taconic at 5–

6 weeks of age. For overexpression, xenograft assays female NOD (NOD.Cg-Prkdc< scid> Il2rg< tm1Wjl> Tg (CMV-

IL3,CSF2,KITLG)1Eav/MloySzJ) mice at 6–7 weeks of age were purchased from Jackson Laboratories. Animal experiments were

performed by B.J. and K.M. according to protocol 11–023 approved by the Dana-Farber Cancer Institute Animal Care and Use Com-

mittee. Mice were housed 5 to a cage with ad libitum access to food and water in 20�C ambient temperature, 40–50% humidity, and

12-h light/12-h dark cycle.

METHOD DETAILS

Xenograft assays
All animal experiments were performed in an AAALAC-accredited SPF rodent-only barrier facility at Dana-Farber Cancer Institute. All

mice are housed in individually ventilated, solid-bottom, polysulfone 135 sq. in. microisolator cages. The cages are used in conjunc-

tion with the Optimice rack systems with integrated automatic watering. Temperature and humidity in the rodent facility is controlled

at 72 ± 2�F and a target range of 35–55% relative humidity. A standard photoperiod of 12 h light/12 h dark is controlled by an auto-

mated system. All animal experiments were performed according to protocol 11–023 approved by the Dana-Farber Cancer Institute

Animal Care and Use Committee. Animals were euthanized by CO2 inhalation. Maximum tumor size burden allowed for mice is 2 cm

and this was not exceeded in any of the experiments. For xenograft assays using Hs578T cells expressing dox-inducible shRNAs, 5–

6-weeks old female NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) mice were purchased from Taconic. Tumors were induced by bilat-

eral orthotopic mammary fat pad injection of 2 3 106 Hs578T (non-targeting, shPRRX1-1, 2 and 3) cells suspended in 50 mL total

volume of 50% DMEM media (Corning, cat# 10-013-CV) and 50% of Matrigel (BD Biosciences, cat# 354234). After tumors became
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palpable, mice were randomized into two groups (+ and – doxycycline diet (625ppm)). Tumor growth was monitored weekly using

caliper measurements. Mice were euthanized and tumors collected, fixed overnight in 4% formalin, stored in 70% ethanol, followed

by paraffin embedding, sectioning, and hematoxylin and eosin staining by the Pathology Core of the Brigham andWomen’s Hospital.

For xenograft assays using PRRX1 overexpressing lines female NOD (NOD.Cg-Prkdc< scid> Il2rg< tm1Wjl> Tg (CMV-

IL3,CSF2,KITLG)1Eav/MloySzJ) mice at 6–7 weeks of age were purchased from Jackson Labs. Tumors were induced by bilateral

orthotopic mammary fat pad injection of 5 3 106 EMG3 WT/mutant +/� doxycycline cells, 5 3 106 SUM185 WT +/� doxycycline

cells, 53 106 MFM223 WT/mutant +/� doxycycline cekks, and 2.625 x 106 HCC3153 WT/mutant +/� doxycycline cells suspended

in 50 mL total volume of 50%DMEM-F12media (Corning, cat# 10-090-CV) and 50% of Matrigel (BD Biosciences, cat# 354234). Plus,

doxycycline cells were pretreated for 18hrs (HCC3153), 2 days (SUM185, MFM223), or 3 days (EMG3) with 3 mg/mL doxycycline

before injection. Mice in the plus doxycycline group began their doxycycline diet (625ppm) starting 2 (SUM185, MFM223) or 3

(EMG3, HCC3153) days before the injection. Tumor growth was monitored weekly using caliper measurements. Mice were eutha-

nized and tumors collected, fixed overnight in 4% formalin, stored in 70% ethanol, followed by paraffin embedding, sectioning,

and hematoxylin and eosin staining by the Pathology Core of the Brigham and Women’s Hospital.

ChIP-seq
Cell lines:H3K27ac ChIP-seq data for two samples was used from our prior publications.5,36 For histone H3K27ac ChIP-seq, 53 106

cells were fixed with 1% paraformaldehyde for 10 min at room temperature. For PRRX1 ChIP-seq, 13 107 cells were fixed with 2mM

DSG (Thermo scientific 20593) for 30 min at room temperature. DSG was then removed and replaced with fixing buffer (50 mM

HEPES-NaOH (pH 7.5), 100 mM NaCl, 1mM EDTA) containing 1% paraformaldehyde (Electron Microscopy Sciences, 15714) and

cross-linked for 10 min at 37�C. Crosslinking was quenched by adding glycine to a final concentration of 0.125 M. The cells were

washedwith ice-cold PBS, harvested in PBS. The nuclear fraction was extracted by first resuspending the pellet in 1mL of lysis buffer

(50 mM HEPES-NaOH (pH 8.0), 140 mM NaCl, 1mM EDTA, 10% glycerol, 0.5% NP-40, and 0.25% Triton X-100) for 10 min at 4�C.
Cells were pelleted and washed in 1 mL of wash buffer (10 mM Tris-HCL (pH 8.0), 200 mMNaCl, 1 mM EDTA) for 10 min at 4�C. Cells
were then pelleted and resuspended in 1 mL of shearing buffer (10 mM Tris-HCl (pH 8), 1 mM EDTA, 0.1% SDS) and sonicated in a

Covaris sonicator. Lysate were cleared by centrifugation for 5 min at 14,000 rpm. Then 100 mL of 10% Triton X-100 and 30 mL of 5M

NaCl were added. The sample was then incubated with 20 mL of Dynabeads Protein G (LifeTechnologies,10003D) for 1 h at 4�C. Pri-
mary antibodies were added to each tube, and immunoprecipitation (IP) was conducted overnight at 4�C. Cross-linked complexes

were precipitated with Dynabeads Protein G for 2 h at 4�C. The beadswere thenwashed in low salt wash buffer (20mMTris-HCl pH 8,

150 mMNaCl, 10 mM EDTA, and 1% SDS) for 5 min at 4�C, high salt wash buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, and 1% SDS)

for 5 min at 4�C and LiCl wash buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, and 1% SDS) for 5 min at 4�C. DNA was eluted in elution

buffer (100mM sodium bicarbonate and 1%SDS). Cross-links were reversed overnight at 65�C. RNA and protein were digested with

0.2 mgmL�1 RNase A for 30 min at 37�C followed by 0.2 mgmL�1 Proteinase K for 1 h at 55�C. DNAwas purified with phenol-chlo-

roform extraction and isopropanol precipitation. ChIP-seq libraries were prepared using the Rubicon ThruPLEX DNA-seq Kit (cat#

R400427) from 1 ng of purified ChIP DNA or input DNA according to the manufacturer’s protocol.

RNA-seq
Total RNAwas extracted using the RNeasyMini Kit (Qiagen). RNA-seq libraries were prepared using Illumina TruSeq StrandedmRNA

sample preparation kits from 500 ng of purified total RNA according to the manufacturer’s protocol. The finished dsDNA libraries

were quantified by Qubit fluorometer, Agilent TapeStation 2200, and RT-qPCR using the Kapa Biosystems library quantification

kit according to the manufacturer’s protocols. Uniquely indexed libraries were pooled in equimolar ratios and sequenced on an Illu-

mina NextSeq500 with single-end 75 bp reads in the Dana-Farber Cancer Institute Molecular Biology Core Facilities.

DNA methylation
Genomic DNA was extracted using the ALLPrep kit (Qiagen). DNA methylation profiling was carried out on Infinium

HumanMethylation450K BeadChip 450,000 CpG site platform array (Illumina, WG-314-1003 discontinued) at the Harvard Medical

School-Partners HealthCare Center for Genetics and Genomics.

Mass spectrometry analysis of histone modifications
Briefly, histones were isolated from cell nuclei using acid extraction, biochemically prepared, and analyzed by mass spectrometry

against a reference of stable isotope-labeled synthetic peptide standards exactly as described.37

Metabolomic profiling
Metabolomic profiling was performed as previously described.38 Briefly, 13 107 cells were cultured in triplicate, and themediumwas

changed 2 h before metabolite extraction. After aspirating the medium completely, 4 mL of 80% (v/v) methanol which was precooled

to�80�Cwas added to the plates on dry ice, then incubate the plates at� 80�C for 20 min. The plates were scraped on dry ice with a

cell scraper, and the cell lysate/methanol mixture was transferred to a 15-mL conical tube on dry ice. After centrifuging the tube at

14,000g for 5 min at 4�C to pellet the cell debris, the metabolite-containing supernatant was transferred to a 15-mL conical tube on

dry ice. To collect metabolites completely, 500 mL of 80% (v/v) methanol precooled to �80�C was added to the remaining pellet in a
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15-mL tube and vortex for 1 min at 4�C. The tubes were centrifuged again at 14,000g for 5 min at 4�C, and then the supernatant was

transferred to a conical tube. A total of 4.5 mL of sample was divided and transferred into three 1.5-mLmicrocentrifuge tubes (1.5 mL

in each tube), then SpeedVac/lyophilize to a pellet using no heat. Dried metabolite samples were stored at � 80�.

Mass cytometry (CyTOF)
Antibodies used formass cytometry in this study are listed in key resources table. All antibodieswere purchased in carrier-free buffers

from the indicated sources and conjugated with the respective lanthanide metals by the CyTOF Antibody Resource and Core at Brig-

ham Women’s Hospital, Boston, MA, USA. Cells were treated with 50 mM IdU-127 (Fluidigm, South San Francisco, CA, USA) for

30min and 100 mMof the intercalator-103Rh (Fluidigm) for 15min at 37�C in their respectivemedium.Next, 1x106 cells of each sample

were barcoded using theCell-ID 20-PlexPdBarcodingKit (Fluidigm) according to themanufacturer’s instructions. Barcoded samples

were pooled and stained simultaneously. Cells were fixed for 10minwith paraformaldehyde (ElectronMicroscopy Sciences, Hattfield,

PA, USA) at a final concentration of 1.6%, followed by Fc-receptor block (Human TruStain FcX, Biolegend, San Diego, CA) for 10 min

and surface antibody staining for 30min at room temperature. Subsequently, cells were permeabilizedwithmethanol for 10min on ice

and incubated with the antibody cocktail for intracellular epitopes for 30 min. Cells were kept at 4�C overnight in Fix, and Perm Buffer

(Fluidigm) was supplemented with Intercalator-IR (Fluidigm) 1:2000. Prior to analysis, cells were washed with water, resuspended in

water containing EQFour Element CalibrationBeads (Fluidigm) (1:10), and filtered through a 35 mmstrainer. Sampleswere acquired at

a CyTOF Helios instrument (Fluidigm), normalized as previously described16 and analyzed with Cytobank (Cytobank, Inc., Mountain

View, CA). Cell Staining Media (PBS with 0.5% BSA, 0.02% NaN3) was used for all washes during staining.

Generation of TET-doxycycline inducible PRRX1 knockdown and overexpression cells
Hs578T and TTC642 cells were transduced with shERWOOD UltramiR Lentiviral Inducible shRNA pZIP target gene PRRX1 set of 3

shRNAs ((1) ULTRA-3340261-pZIP-TRE3G-ZsGreen-Puro, (2) ULTRA-3340262-pZIP-TRE3G-ZsGreen-Puro, (3) ULTRA-3340265-

pZIP-TRE3G-ZsGreen-Puro and non-targeting control (TLNSU4300-ULTRA-NT#4-pZIP-TRE3G-ZsGreen-Puro) (Transomic Tech-

nologies Inc, cat# for the shRNA set TLHSU2300-5396). After puromycin selection, three days of doxycycline treatment induces

the PRRX1 silencing. PRRX1 knockdown was confirmed both by RNA-seq and Western blot. WT or MUT (DNA-binding mutant,

DH1) PRRX1 lentiviral vectors (gift from Dr. Rani George’s Lab39) were packaged in HEK293FT cells using the PAX2 packaging

plasmid (Addgene plasmid, #35002), pMD2.G envelope plasmid (Addgene plasmid, #12259), and Lipofectamine 3000 transfection

reagent (Life Technologies, #L3000015). The virus was collected 48 h after transfection. EMG3, HCC3153, MFM223, and SUM185

cells were transducedwith 2mL of virus and 10 mg/mL polybrene (Millipore Sigma, #TR1003G). Cells were selectedwith neomycin for

2–3 weeks. Five days of doxycycline treatment induces the WT and mutant PRRX1 overexpression. PRRX1 overexpression was

confirmed both by RNA-seq and immunoblot.

Cellular proliferation assays
Cellular viability was assessed using the Celigo system (Nexcelom, Celigo ImageCytometer). Cells expressing doxycycline-inducible

shPRRX1 or non-targeting shRNA were plated in triplicates in 24-well plates and cultured at 37�C with 5% CO2. 24hrs after plating,

cells were treated with 3ug/ml doxycycline to induce shRNA expression. Culture medium was replaced every 48hrs with freshly pre-

pared doxycycline. Cell viability was measured every 24hrs beginning at 48hrs from the start of the experiment for the duration of ten

days. The viability of the EMG3, HCC3153, and MFM223 cells expressing wt or dbm PRRX1 was assessed using the Celigo system

(Nexcelom, Celigo Image Cytometer). The viability of SUM185 cells was assessed using the Countess system. EMG3, HCC3153,

MFM223, and SUM185 cells expressing doxycycline-inducible WT or mutant PRRX1 were plated in +/� doxycycline conditions.

Each condition was plated in triplicates in 24-well plates (EMG3 and HCC3153) or 6-well plates (MFM223 and SUM185) and cultured

at 37�C with 5% CO2. Cells in the + doxycycline condition were pretreated with 3ug/ml doxycycline for 30+ days to induce WT or

mutant PRRX1 overexpression. Culture medium was replaced every 48–72 h with freshly prepared doxycycline. Cell viability was

measured every 24hrs (EMG3 and HCC2153) or 48hrs (MFM223 and SUM185) beginning at 24hrs from the start of the experiment

for the duration of nine (MFM223 and SUM185) or ten (EMG3 and HCC3153) days.

Antibodies and inhibitors
Antibodies: For immunoblotting, immunofluorescence and immunohistochemistry were anti-PRRX1 (Sigma, HPA051084), b actin

(Sigma, A2228), H4K20me3 (Abcam, ab9053), The antibodies used for ChIP were anti-H3K27ac (Diagenode, C15410196) and

anti-PRRX1 (Sigma, HPA051084). Full list with catalog numbers available in Table S2. Inhibitors were obtained from Selleckchem:

Galunisertib, LY2157299 cat#S2230, Xav939 cat#S1180, LGK-974 cat#S7143, Vismodegib (GDC-0449) cat#S1082, Sonidegib (Eris-

modegib, NVP-LDE225) cat#S2151, NVP-BHG712 cat#S2202, BGJ398 (NVP-BGJ398) cat#S2183, Vorinostat (SAHA, MK0683)

cat#S1047, Tretinoin cat#S1653, MK-8617 cat#S8443, Ruxolitinib, INC018424 cat#S1378, A-1155463 cat#S7800, ML324

cat#S7296, GSK J1 cat#S7581, Verteporfin cat#S1786 and MedChem Express: A-485 cat#HY-107455.

Immunoblotting
Cells were lysed in RIPA buffer. Proteins were resolved in SDS-polyacrylamide gels (4–12%) and transferred to PVDFmembranes by

using a Tris-glycine buffer system. Membranes were blocked with 5%milk powder in 0.1% Tween 20 in TBS (TBS-T) for 1 h at room
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temperature, followed by incubation with primary antibodies in 5% milk TBS-T. The membranes were developed with Immobilon

substrate (EMD Millipore).

Immunofluorescence staining
After deparaffinization and rehydration, slides were subjected to antigen retrieval in Tris/EDTA buffer (pH9, Dako) for 30 min in a

steamer. Endogenous peroxidase was quenched after a 10 min incubation in 3% H2O2 in methanol. Blocking solution (100%

goat serum) was applied for 1 h. Incubation with primary antibody 1:100 PRRX1 in PBS with 5% goat serum was held overnight

at 4�C in a moist chamber. HRP-conjugated secondary antibody was applied for 1 h at room temperature. Samples were incubated

with biotinylated-TSA at 1:50 in diluent solution (Akoya Biosciences) for 10 min before fluorophore-conjugated streptavidin second-

ary antibody was applied for 1 h at room temperature. Slides were then mounted with VectaShield HardSet Antifade Mounting Me-

diumwith DAPI (Vector Laboratories). TheDana-Farber Breast Cancer TissueMicroarray (TMA) consisted of primary untreated TNBC

samples from 81 evaluable patients who underwent definitive breast surgery at Brigham and Women’s Hospital. The TMA was

stained with H4K20me3 (1:100) antibody and imaged using Nikon microscope. Three images were taken per each core for 240

out of 267 cores, for the remaining 27 one or two images were taken due to tissue loss or low tumor content. The images were

then analyzed using QuPath to classify cells as either H4K20me3 positive or negative based on staining intensity. H4K20me3 staining

mean intensity was calculated per individual nucleus within an image. The mean intensity per image was normalized to nuclei count.

Recurrence-free survival (RFS) was defined as the interval from the date of initial surgical resection to the date of recurrence (local or

distant), or date of last known contact if the patient was alive and has not recurred. RFS was estimated using the Kaplan-Meier

method, with hazard ratios and 95% confidence intervals from a univariate Cox proportional hazard model.

Immunohistochemistry
After deparaffinization and rehydration, slides were subjected to antigen retrieval in Tris/EDTA buffer (pH9, Dako) for 30 min in a

steamer. Endogenous peroxidase was quenched after a 10 min incubation in 3% H2O2 in methanol. Blocking solution (100%

goat serum) was applied for 1 h. Incubation with primary antibody 1:100 PRRX1 in PBS with 5% goat serum was held overnight

at 4�C in a moist chamber. Biotinylated secondary antibody was applied for 30 min at room temperature. A Vectastain ABC perox-

idase kit was applied for 30min to conjugate secondary antibodies to HRP. The tissuewas exposedwith DAB (Sigma Aldrich) under a

microscope until the signal was observed then the reaction was stopped with water. Samples were counter-stained using hematox-

ylin (Leica Biosystems, cat# 3801575) and bluing solution and dehydrated. Slides weremountedwith Cytoseal 60 (Thermo Scientific).

Small molecule inhibitor screen
Using the multidrop combi microplate dispenser (Thermo Scientific, cat#D01515) 34 TNBC cell lines were seeded in quadruplicates

in 50mL volume at a density of 500–2000 cells/well in 384 well plates and left to adhere for 24h. Cells were cultured at 37�C with 5%

CO2. An automated liquid handling robot, JANUS (PerkinElmer), was used to deliver 100 nL of molecules from the drug panel (inhib-

itors listed above under ‘antibodies and inhibitors’ section) obtained by 96-well pin-tool transfer. After 72 h, ATPlite (PerkinElmer, cat#

6016731) was performed, and luminescence was measured using a plate reader. Data was normalized to baseline (day 0). The area

under the viability curve for treatment response (AUC) was calculated for each drug.

High Throughput BH3 profiling
High Throughput BH3 profilingwas used to determine the apoptotic priming and anti-apoptotic dependencies of a set of 34 TNBCcell

lines, as previously described.40 In brief, TNBC cell lines were seeded at a density of 500–2000 cells/well in 384 well plates and left to

adhere for 24h. Then cells were washed 3 timeswith PBS using the BioTek 406EL plate washer (BioTek). Consequently, different BH3

peptides and BH3 mimetics at different concentrations were added via pin transfer, and cells were incubated in BH3 profiling buffer

containing 0.002% digitonin for 1h. Cells were fixed in paraformaldehyde for 15 min. Afterward, the fixative was neutralized using a

tris/glycine buffer. Cells were stained overnight with Hoechst33342 (Nuclei, Invitrogen) and anti-cytochrome c-Alexa Fluor 647 anti-

body (BioLegend). Prior to imaging, the stain solution was washed out using the BioTek 406EL plate washer. Fluorescent microscope

images from the BH3 profiling plates were acquired using the IXM XLS high content widefield microscope (Molecular Devices) at the

ICCB Longwood Screening Facility. The cytochrome c positive cells were quantified using theMulti-Wavelength Cell Scoring module

in Metamorph software. Release of cytochrome c in response to the BIM and PUMA peptides indicate overall mitochondrial priming.

In contrast, the release of cytochrome c in response to the BAD, HRK, MS1, FS1 peptides, and BH3 mimetics indicate specific anti-

apoptotic dependencies.41 Combinations of BH3mimetics were used to test co-dependencies. Release of cytochrome c in response

to theBADpeptide and ABT-263 indicateBCL-2, BCL-XL, or Bcl-wdependency; to theHRKpeptide, A-133, and A-115 indicate BCL-

XL dependency; to ABT-199 indicates BCL-2 dependency; to the MS1 peptide and S63845 indicate MCL-1 dependency.

Single cell RNA-seq
Single-cell RNA-seq experiments were conducted in two batches. 14 TNBC cell line samples were processed using the 10x v2 kit.

Briefly, cells were resuspended to a concentration of 1,000 cells/uL and 2,000 cells were targeted for recovery. 14 TNBC cell line

samples were processed with the 10x v3 kit, since at this point the 10x v2 kit was discontinued. Cells were resuspended at a con-

centration of 1,000 cells/uL and 5,000–6,000 cells were targeted for recovery.
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QUANTIFICATION AND STATISTICAL ANALYSIS

In vitro and in vivo data
Data were compiled and shown as mean ± standard error of the mean (SEM). Data were evaluated using unpaired, two-tailed t tests

(95% confidence interval) or two-way analyses of variance using GraphPad Prism software version 10.1.0 (GraphPad Inc, San Diego,

CA). p-values <0.05 were considered significant.

Breast cancer cohorts
METABRIC: The ‘‘Breast (METABRIC 2016)’’ dataset was downloaded fromwww.cbioportal.org inMay 2020. Microarray expression

data was available for 1,904 samples. Samples annotated as ‘‘Negative’’ for ER_STATUS, PR_STATUS, and HER2_STATUS, from

patients annotated as ‘‘Negative’’ for ER_IHC and as ‘‘LOSS’’ or ‘‘NEUTRAL’’ for HER2_SNP6were considered to be TNBC. Samples

that were annotated as ‘‘Positive’’ for ER_STATUS, PR_STATUS or HER2_STATUS, or that came from patients annotated as ‘‘Pos-

itive’’ for ER_IHC, or ‘‘GAIN’’ for HER2_SNP5 were classified as non-TNBC. Otherwise, samples were considered of indeterminate

TNBC status. 227/1,904 (12%) of samples were classified as TNBC, 1,673/1,904 (88%) were classified as non-TNBC, with the re-

maining 4/1,904 (0%) considered indeterminate. Expression log intensity data was used for downstream analysis, after removing

eight genes with at least one missing value in the dataset.

TCGA: TCGA-BRCA gene expression and DNA methylation data was downloaded from the GDC data portal in October 2021,

together with TCGA-BRCA clinical supplements. For expression data, we downloaded FPKM Gene Expression Quantification

data for 1,222 samples across 1,092 unique cases. We retained data for the 1,090 cases with at least one primary tumor sample

and available clinical supplement. We kept the first primary tumor file for cases where there wasmore than one. For DNAmethylation

data, we downloaded Illumina Infinium HumanMethylation450 BeadChip Methylation Beta Value data for 892 samples, representing

789 unique cases. We retained data for 782 cases with at least one primary tumor sample and available clinical supplement. Out of

1,094 retained cases, both DNAmethylation and RNA-seq data was available for 778 cases (71%), RNA-seq data alonewas available

for 312 cases (29%), and DNA methylation data alone was available 4 cases (0%).

Survival information and clinical covariate information for these samples was downloaded from the cBioPortal for Cancer Geno-

mics in May 2020. Annotations for individual cases were obtained from patient-level annotations in the cBioPortal ‘‘Breast Invasive

Carcinoma Breast (TCGA PanCan 2018)’’ dataset. Partial or complete annotations were available for 1,080/1,094 (99%) of TCGA-

BRCA cases from this data.

TCGApatientswere assigned a TNBC status based on the downloaded clinical annotation files. Cases annotated as ‘‘Negative’’ for

‘‘breast_carcinoma_estrogen_receptor_status’’, ‘‘breast_carcinoma_progesterone_receptor_status’’, and ‘‘lab_proc_her2_neu_im-

munohistochemistry_receptor_status’’, were classified as TNBC. Patients annotated as ‘‘Positive’’ for at least one of these three

fields were considered as non-TNBC, otherwise cases were considered indeterminate. 115/1,094 (11%) of cases were called as

TNBC and 861/1,094 (79%) were called as non-TNBC, with the remaining 118/1,094 (11%) considered indeterminate. Of the 115

patients called as TNBC, 83 cases (72%) had data for both RNA-seq and methylation, and 32 (28%) had RNA-seq data only.

For RNA-seq data, Ensembl gene names were converted to HGNC symbols based on annotations downloaded from the Ensembl

biomart. Genes with no matching HGNC symbol were excluded from downstream analysis. Where a gene mapped to more than one

HGNC symbol, the first symbol was used. Where more than one gene mapped to the same HGNC symbol, expression data from the

first gene was assigned to the gene symbol. The transformation log2 (X+1) was applied to the filtered FPKM values to obtain the log-

normalized expression matrix for downstream analysis.

For DNA methylation data, downloaded beta-values were converted to M-values based on the following formula39:

M � value= log2

�
Beta � value

ð1 � Beta � valueÞ
�
;

Loci overlapping SNP’s at the CpG site or single-base extension site were identified using the ‘SNPs.137CommonSingle’ SNP

annotation from the R package ‘‘IlluminaHumanMethylation450kanno.ilmn12’’ and were excluded from the downstream analysis,

as were CpG loci annotated as cross-reactive42,43 and loci with any missing values across the 782 retained samples. Loci were as-

signed to H3K27ac peaks and super-enhancers, defined based on unperturbed TNBC cell lines, based on overlap with the genomic

coordinates of those regions. Loci were assigned to gene bodies and promoters based on the annotation from the R package Illu-

minaHumanMethylation450kanno.ilmn12.hg19. Gene body loci for each gene were defined as those loci annotated as ‘‘Body’’ or ‘‘3

‘UTR’’ in the array annotation. Promoter loci for each gene were defined as those loci annotated as ‘‘TSS1500’’, ‘‘TSS200’’, ‘‘5’UTR’’,

or ‘‘1stExon’’. Loci were assigned to the non-genic regions of super-enhancers if they fell within a super-enhancer region and were

not assigned to the gene body, or promoter of any gene. Methylation levels in genomic regions of interest were quantified as the

average M-value among loci in the region.

Additional cell line data
Additional RNA-seq read count data from breast cancer, neuroblastoma, and rhabdoid tumor cell lines was obtained from.44
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H3K27ac ChIP-seq analysis
Cell line and PDXH3K27ac ChIP-seq:Reads were aligned with BWA-mem v0.7.17 to hg19, and duplicates were removedwith Picard

MarkDuplicates v2.18.17 (REMOVE_DUPLICATES=TRUE, VALIDATION_STRINGENCY=LENIENT). Peaks for each cell line were

called using MACS2 v2.1.2 (–SPMR, –B, –keep-dup=1, –extsize=146, –nomodel, –q 0.05), and super-enhancers were called for

each cell line using ROSE (–t 2500) using both ranking and control bam files.6,7 Consensus super-enhancers were defined by taking

the union of super-enhancers across all cell lines and were considered present in a cell line if they overlapped a super-enhancer

called in that cell line. A similar approach was taken to define consensus peaks and determine their presence across cell lines. bed-

tools intersect v2.27.1 was used to quantify the number of reads overlapping consensus super-enhancers and peaks in each cell line

and PDX sample. Read per kilobase of transcript per million mapped reads (RPKM) values for individual regions were calculated us-

ing the formula:

rpkmij = 1E9
cij

limj

;

where cij is the read count for sample j in region i, li is the length of region i in base pairs, andmj is the total mapped reads for sample j.

Log-normalized H3K27ac values were obtained for each sample using the following formula:

lnij = log2

�
10 rpkmij + 1

�
Consensus super-enhancers on canonical nuclear chromosomes were assigned to the nearest gene based on linear genomic

distance.

PRRX1 over-expression experiment:H3K27ac data was pre-processed as described above (cell line and PDXH3K27ac ChIP-seq).

bedtools intersect v2.27.1 was used to quantify the number of reads overlapping consensus peak and super-enhancer regions,

defined based on unperturbed cell lines, in each sample. RPKM and log-normalized expression values were calculated as described

above.

RNA-seq analysis
Cell lines: RNA-seq data was aligned and preprocessed using the VIPER pipeline.45 Log-normalized expression values were derived

from per gene FPKM values output by VIPER using the following formula:

lnij = log2

�
fpkmij + 1

�
;

where fpkmij is the FPKM value for gene i in sample j.

PDXs: RNA-seq data was initially aligned to both human hg19 and mouse mm10 genomes. Two-pass mapping was performed

using the STAR RNA-seq aligner version STAR v2.5.1b (–outSAMDstrandField intronMotif, –outFilterMultimapNmax 20, – alignSJo-

verhangMin 8, –alignSJDBoverhangMin 1, –outFilterMismatchNmax 999, – outFilterMismatchNoverLmax 0.1, –alignIntronMin 20,

–alignIntronMax 1000000, – alignMatesGapMax 1000000, –outFilterType BySJout, –outFilterScoreMinOverLread 0.33, – outFilter-

MatchNminOverLread 0.33, –limitSjdbInsertNsj 1200000, –chimSegmentMin 15, – chimJunctionOverhangMin 15, –twopassMode

Basic). Reads uniquely mapped only to the hg19 genome were kept, along with uniquely mapped reads that had significantly better

alignment scores in the h19 genome compared to the mm10 genome. Filtered reads were then aligned and preprocessed using the

VIPER pipeline,45 and quantification was performed as described above.

PRRX1 5 day knockdown experiment:Weperformed RNA-seq on 16 samples (doxycycline treated and untreated samples for each

of shRNAs 1–3 and a non-targeting control for each of Hs578T and TTC642). RNA-seq data was preprocessed and quantified as

described above (Cell lines).

PRRX1 28 and 56 day knockdown experiment: The experiment comprised 24 samples (doxycycline treated and untreated samples

for each of shRNAs 1 and 3 and a non-targeting control for each of two time points for each of Hs578T and TTC642). However, library

preparation failed for shRNA1 for the Hs578T 8 week time point. As a result, pre-processing and downstream analysis was based on

22 samples. RNA-seq data was preprocessed and quantified as described above (Cell lines).

PRRX1 over-expression experiment:We performed RNA-seq on 48 samples (doxycycline treated and untreated samples for each

of SUM185, EMG3, MFM223, and HCC3153 for each of wt and dh3 PRRX1 for each of three time points). RNA-seq data was pre-

processed and quantified as described above (Cell lines).

DNA methylation analysis
Cell lines/PDXs: The Infinium HumanMethylation450 Beadchip (Illumina, WG-314-1003) 450,000 CpG site platform was used to

generate comprehensive genome-wide profiling of DNA methylation. The cell line and PDX datasets were preprocessed using the

function preprocessIllumina from the R package minfi (v.1.34.0),46 using the first annotated TNBC cell line as a common reference.

Probes with detection p-value >0.01 in any sample were removed from each dataset, as were probes overlapping an annotated SNP

at the CpG site, or CpG probes annotated as cross-reactive.42,43 Normalized methylation M-values for each locus i in each sample j

were obtained using the following formula39:
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mij = log2

�
methylated intensityij+1

��
unmethylated intensityij+1

�
Methylation levels in genomic regions of interest were quantified as the average M-value among loci in the region, as described

above for TCGA data.

Mass spectrometry analysis of histone modifications
Histones were isolated from cell nuclei using acid extraction, biochemically prepared, and analyzed by mass spectrometry against a

reference of stable isotope-labeled synthetic peptide standards as described.37 The experiment was performed for 35 cell lines, the

34 TNBC cell lines used in our study, and one additional cell line. Two replicate samples were analyzed for each of the 34 TNBC cell

lines used for downstream analysis, with the exception of HDQP1, for which one replicate failed during preprocessing. The ratio of the

intensity of each endogenous peptide to the intensity of the internal standard was calculated and normalized to the respective ratio of

a mass balance peptide (termed NORM peptide). H3 and H4marks were normalized to the H3 NORM (41–49) and H4 NORM (68–78)

peptides respectively. Ratios were log2 transformed, row- (histonemark-) median normalized, and averaged across replicates within

each cell line to obtain the final log-normalized peptide values. Histone marks that had missing values in any of the replicate samples

for any of the 34 retained cell lines were removed from the dataset, and downstream analysis was based on the remaining 59/63 his-

tone marks.

Metabolomics analysis
Metabolomics profiling was performed in two batches (MB1 andMB2) with three replicates performed for each cell line in each batch.

34 TNBC cell lines were profiled in total; 17 cell lines were profiled in MB1 and 18 were profiled in MB2, with one cell line, HCC1143,

profiled in both batches. Metabolites that had missing values in any sample were removed from the dataset, and downstream anal-

ysis was based on the remaining 228/302 metabolites. To correct for potential batch effects, we used an approach based on.47 For

each metabolite, the ratio between the average raw peak area in each batch and the overall average for the metabolite was

computed. The metabolite raw peak area values for each replicate were then divided by the ratio for the relevant batch to obtain

batch-corrected peak areas. The batch-corrected peak area values were log2 transformed. To correct for potential differences in

cell line biomass that could lead to systematic differences in measured metabolite abundance we applied the two-step procedure

described in47: An additive transformation was applied to each row (metabolite) to equalize themedian value acrossmetabolites, and

subsequently an additive transformation was applied to each column (sample) to equalize the median value across samples. Pro-

cessed values were averaged across replicates corresponding to the same cell line within each batch to obtain log-normalized

metabolite abundance values.

Drug screen data
The sensitivity of each cell line to each drug was quantified as one minus the area under the viability curve for treatment response

(AUC) for the drug in the cell line.

PRRX1 ChIP-seq analysis
Cell line PRRX1 transcription factor ChIP-seq: Cell line PRRX1 ChIP-seq experiments were performed 2–3 times in each cell line un-

der 2–3 different sonication conditions. Downstream analysis was based on results from the two sonication conditions common to all

cell lines. Reads were aligned and de-duplicated, and peaks were called as described above for H3K27ac ChIP-seq. For TTC642,

one of the two input samples failed the ‘‘Per base sequence module’’ of the fastqc tool (www.bioinformatics.babraham.ac.uk/

projects/fastqc/). In this case the passing input was used to call peaks in both replicate samples. Consensus PRRX1 peaks were

defined by taking the union of PRRX1 peaks across all cell lines and sonication conditions. Consensus peaks were considered pre-

sent in a cell line if they overlapped a peak called in that cell line in either sonication condition.

Hierarchical clustering of cell lines
Datasets were mean-centered for each feature prior to clustering. Clustering was performed based on log-normalized data for the

RNA-seq, H3K27ac ChIP-seq, histone mass spectrometry, and metabolomics datasets. For the DNAmethylation, BH3 profiling and

drug screen datasets clustering was based on M-values, peptide abundance values, and sensitivity values respectively. Features

with zero variance across cell lines were removed from each dataset as an initial filtering step prior to selecting highly variable fea-

tures. For the sequencing-based datasets, RNA-seq and ChIP-seq, we performed an additional initial filtering step, where we

removed features which had FPKM >1 or RPKM >1 in fewer than two samples, respectively. The R function ‘‘hclust’’ with the

‘‘ward.D2’’ method was used to cluster both rows (features), and cell lines (columns) based on Euclidean distances.

Transcriptomic heterogeneity estimation using bulk RNA-seq
Shannon’s equitability for each sample j was calculated using RNA-seq FPKM values using the following formula:
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sej = �
XN
i = 1

pij log pij

log N
;

where pij =
fpkmij

tj
, tj =

PN
i = 1fpkmij, and N is the number of genes measured in the dataset. For the purposes of this calculation, we

defined 0 log 0 to be equal to 0.

Analysis of correlations between gene expression, H3K27ac expression and DNA methylation across genes
To correlate gene expression with H3K27ac ChIP-seq expression in super-enhancers, genes were assigned to super-enhancers by

linear genomic distance. Each gene was matched with the nearest super-enhancer, by linear genomic distance to the gene TSS,

among all super-enhancers annotated to that gene, if any. Correlations were calculated based on log-normalized gene expression

data for mRNA data, average M-values for DNA methylation data, and log-normalized H3K27ac expression for H3K27ac ChIP-

seq data.

Differential H3K27ac and gene expression analysis
Differential H3K27ac analysis was performed based on count data using DESeq2,48 after filtering to remove regions with zero counts

across all samples. The ratio of the total mapped reads in each sample to the average value of the total mapped reads across samples

was used as the size factor for each sample, as described.49 Differential expression analysis was performed using DESeq2

(v.1.30.1)48 based on count data output by VIPER, after filtering to remove genes with zero counts across all samples. Regions or

genes with adjusted p values <0.05 were considered differentially expressed.

MOFA data integration analysis
TNBC cell lines original model: The R package MOFA2 (v.1.1.6)10,11 was used to fit a multi-omics factor analysis (MOFA) model to

infer latent biological factors active in TNBC cell lines. The MOFA model was fit using RNA-seq data (log-normalized FPKM values),

DNA methylation data (average M-values), metabolomics data (log-normalized metabolite abundance), histone mass spectrometry

data (log-normalized peptide values), and H3K27ac ChIP-seq data (log-normalized RPKM values). The MOFA model assumes con-

stant residual variance for a given feature across samples. To satisfy this assumption, for this analysis we removed the HDQP1 sam-

ple from the histone mass spectrometry dataset which, unlike the other samples in this dataset, was based on only a single replicate.

The MOFA model additionally assumes uncorrelated residuals across samples. To satisfy this assumption, for this analysis we also

excluded the second (MB2) replicate of the duplicated HCC1143 cell line from themetabolomics dataset. Featureswith zero variance

across cell lines were removed from each dataset as an initial preprocessing step. And for the RNA-seq and ChIP-seq datasets we

additionally removed features with FPKM <1 in fewer than two samples and RPKM <1 in fewer than two samples, respectively. Anal-

ysis was based on the top 5,000 most variable features in each dataset after filtering, or all features, where the top 5,000 features

accounted for 90% or more of the remaining features. We fit a model to infer 8 factors, based on the software recommendation

that the number of factors should not exceed �8 given the number of samples. The model was fit with convergence mode set to

‘‘slow’’. The software automatically inferred Gaussian likelihood models for all datasets (out of the three options Guassian, Poisson,

and Bernoulli). The ontology (C5) gene set was downloaded from the Molecular Signatures Database50,51 in February 2021. Feature

set enrichment analysis was run using the MOFA2 function run_enrichment.

Given the setup of the MOFA model, some factors can explain very low, but non-zero, proportions of variance in individual data-

sets. It can therefore be necessary to choose a threshold of variance explainedwhich is considered non-negligible for the purposes of

interpretation. Here we chose to use a threshold of 2%, in keeping with the threshold used in the original MOFA study to prune factors

from the model ([PMID: 29925568]).

PDX validation model: The MOFA model was fit using PDX RNA-seq data (log-normalized FPKM values), DNA methylation data

(average M-values), and H3K27ac ChIP-seq data (log-normalized RPKM values). The datasets were filtered to retain only common

features that were used in the original TNBC cell line model. We fit a model (convergence mode ‘‘slow’’, inferred likelihood models

Gaussian) to infer 3 factors, based on the software recommendation that the number of factors should not exceed�3 given the num-

ber of samples.

TCGA validation model: The MOFA model was fit using TCGA RNA-seq data (log-normalized FPKM values), and DNAmethylation

data (average M-values). As for the PDX validation model, the datasets were subset to common features present in the original cell

line model. We fit a model (convergence mode ‘‘slow’’, inferred likelihoodmodels Gaussian) to infer 8 factors, to match the number of

factors used in the original cell line model.

MOFA scaled weights
Scaled weights were obtained from the original fitted weights for each factor in each dataset by dividing by the largest absolute value

among all weights for that factor and dataset. As a result, the largest absolute value among the rescaled weights for a factor in a data-

set is equal to �1 or 1, depending on whether the original fitted weight with the largest absolute value is negative or positive.
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Signature-based assignment of patient samples to TNBC types
We carried out the following procedure separately for theMETABRIC and TCGA cohorts: For each of the three TNBC types, we over-

lapped the positively and negatively differentially expressed genes from the TNBC cell line RNA-seq data with genes present in the

primary patient data, and determined, n_min_overlap, theminimum size of the six sets of overlapping genes. We defined positive and

negative signature genes for each TNBC type as the top n_min_overlap positively and negatively differentially expressed genes,

respectively, that were also present in the primary patient data. For each sample, we calculated a signature score for each TNBC

subtype as the difference between the average expression of the positive signature genes and the average expression of the negative

signature genes of that type after mean-centering the expression data for each gene. Patient samples were then assigned to the

TNBC type with the highest corresponding signature score.

MOFA factor scores for patient samples
For METABRIC data, multiple linear regression based on mRNA feature weights for genes with data available in the METABRIC

cohort, was used to calculate scores for MOFA Factors 1 to 8, after mean-centering the METABRIC expression data for these genes.

For TCGA data, multiple linear regression based on mRNA and DNA methylation features available in the TCGA cohort was used to

calculate scores for MOFA Factors 1 to 8, after mean-centering the data for these features.

Alternate clustering-based assignment of METABRIC patient samples to TNBC types
We used the functionMclust from the R package ‘mclust’ (v.5.4.6), with default parameters, to cluster samples according to Factor 2,

3, and 6 scores. For each of the resulting clusters, we calculated the average Factor 2, 3, and 6 scores across samples assigned to

that cluster, and identified the factor with the highest average score for the cluster. Samples were classified as basal, luminal, or

mesenchymal if they were assigned to a cluster for which the factor with the highest average score was Factor 6, 2, or 3, respectively.

Classification of mesenchymal tumors into mesenchymal-high and mesenchymal-low groups
Samples considered mesenchymal using signature-based assignment were classified asmesenchymal-high if the Factor 3 score for

the sample was higher than themaximum factor 3 score among basal and luminal samples in the same cohort, andwere classified as

mesenchymal-low otherwise. For the METABRIC cohort, we also considered an alternate clustering-based approach to define the

mesenchymal-high and mesenchymal-low groups. Here, we used the function Mclust from the R package ‘mclust’ (v.5.4.6), with

default parameters, to cluster samples according to Factor 3 scores. Samples considered mesenchymal using our signature-based

approach were classified asmesenchymal-high if they were assigned to the cluster with the highest average factor 3 score, and were

classified as mesenchymal-low otherwise.

CIBERSORTx analysis
The CIBERSORTx web portal (https://cibersortx.stanford.edu/) was used to run CIBERSORTx in ‘‘Impute Cell Fractions’’ mode. The

tool was run using the provided LM22 signature matrix in conjunction with the TCGA TNBC FPKM data. ‘‘B-mode’’ batch correction

was used based on the LM22 source GEP file, with quantile normalization disabled. 100 permutations were used for significance

testing.

Survival analysis
Survival analysis was performed using the ‘survival’ R package. Kaplan-Meier plots weremade using the ‘survminer’ (v.0.4.9) R pack-

age. For this analysis, signature scores for each sample for each putative PRRX1 target set were defined by subtracting the average

expression of putative negative targets from the average expression of putative positive targets after mean-centering the expression

data for each gene.

Definition of transcription factors
Genes were considered to be transcription factors if they were listed as such in the list of human transcription factors from,52 which

was downloaded from http://humantfs.ccbr.utoronto.ca/download.php in October 2022.

Hierarchical clustering of cell lines by expression of subtype-specific transcription factors
Clustering of genes and samples was performed based on log-normalized expression data, after mean-centering per gene, as

described above (See hierarchical clustering of cell lines).

RNA-seq principal component analysis
A combined RNA-seq count matrix was formed for the combined cohort of TNBC, non-TNBC breast cancer, rhabdoid, and neuro-

blastoma cell lines from this study and44 including all 18,677 genesmeasured in both datasets. For 38 genes in common between the

two datasets whichwere annotated tomore than one row in the44 countmatrix, the first expression rowwas retained. Only geneswith

a total count of at least 10 were considered for downstream analysis. DESeq248 was used to obtain size factor-corrected RNA-seq

counts for the combined dataset and log-normalized count values were then obtained using the formula:
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lnij = log2 ðdij + 1Þ;
where dij is the DESeq2 size factor-corrected count value for gene i in sample j

Principal component analysis was performed on the log-normalized count values for the top 20% most variable genes.

Hierarchical clustering of PRRX1 over-expression RNA-seq samples
Data was gene mean-centered prior to clustering. Clustering was performed based on log-normalized gene expression values. Fea-

tures with zero variance across samples and features which had FPKM>1 in fewer than two samples were removed as initial filtering

steps, prior to selecting highly variable features. The R function ‘‘hclust’’ with the ‘‘ward.D2’’ method was used to cluster both rows

(features), and cell lines (columns) based on Euclidean distances.

Immune signature gene set enrichment analysis in PRRX1 over-expression RNA-seq data
RNA-seq count data was filtered to remove geneswith total counts <2 in the conditions under consideration. Counts were normalized

using DESeq2 size factors.48 GSEA analysis was run using the GSEA v4.1.0 command line tool.53 Gene set permutation was used in

conjunction with 5% false discovery rate significance threshold, in line with the software recommendations for datasets with fewer

than 7 samples. Results for each cell line were based on contrasting three doxycycline treated samples (corresponding to the three

measured time points) with three untreated samples (corresponding to the same three time points). Immune gene signatures with 15

or fewer genes remaining in the filtered data for a cell line were excluded from testing in that cell line.

Assessment of PRRX1 expression levels in cell lines used for PRRX1 ChIP-seq
Log-normalized count values for PRRX1 were calculated as described above (See RNA-seq principal component analysis).

PRRX1 targets
Consensus PRRX1 peaks on canonical nuclear chromosomes were assigned to the nearest gene based on linear genomic distance.

The Hs578T and Mes target sets were defined as genes assigned to consensus peaks that were called present in Hs578T and all

mesenchymal cell lines (Hs578T, MDAMB157, and MDAMB436), respectively. The Hs578T-RNA and Mes-RNA target sets were

defined by intersecting the Hs578T and Mes target sets with genes differentially expressed on PRRX1 knock-down in the Hs578T

cell line at the 5 day time point. Genes that down went with PRRX1 knock-down were used to define positive targets and genes

that went up with PRRX1 knock-down were used to define negative targets. BETA27 analysis was run with BETA plus v1.0.7.

ChIP-seq heatmaps
Read permillion (RPM) normalized BedGraph signal track files generated byMACS2were converted to BigWig files using bedGraph-

ToBigWig v4 and Deeptools v3.3.254,55 was used to plot the heatmaps based on bigwig files.

PRRX1 target signature scores and immune signature scores for patient samples
PRRX1 target and immune signature scores were calculated as the difference between the average expression of positive signature

genes and the average expression of negative signature genes after mean-centering the expression data for each gene within each

patient cohort.

MOFA factor scores for PRRX1 over-expression samples
Log-normalized super-enhancer H3K27ac values for the combined cohort of PRRX1 over-expression samples, corresponding con-

trol samples, and untreated cell line samples were mean-centered by super-enhancer. Scores for MOFA Factors 1 to 8 were then

calculated for each sample using multiple linear regression based on super-enhancer weights from the MOFA cell line model.

Hierarchical clustering of PRRX1 over-expression H3K27ac samples
H3K27ac super-enhancer values were mean-centered prior to clustering. Clustering was performed based on log-normalized

H3K27ac signal. Features with zero variance across samples and features which had RPKM>1 in fewer than two samples were

removed as initial filtering steps, prior to selecting highly variable features. The R function ‘‘hclust’’ with the ‘‘ward.D2’’ method

was used to cluster both rows (features), and cell lines (columns) based on Euclidean distances.

Hierarchical clustering of PRRX1 over-expression H3K27ac based on subtype-specific transcription factors
Clustering of genes and samples was performed based on log-normalized H3K27ac data, after mean-centering per gene, as

described above (See hierarchical clustering of cell lines).

Identification and analysis of PRRX1 putative co-binding TF’s
HOCOMOCO v11 core collection human transcription factor binding model matrices in HOMER format (p-value = 0.0001) were

downloaded from (https://hocomoco11.autosome.org/downloads_v11) in November 2022, and were filtered to remove quality C

motifs. Peak and super-enhancer regions that significantly gained or lost H3K27ac in HCC3153 under long-term wt and dh3
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PRRX1 over-expression were overlapped to identify wild-type unique and common (wild-type and dh3) significantly gained and lost

peaks and super-enhancers. Differential motif analysis was performed using the HOMER v3.12 script56 findMotifsGenome.pl (-size

given –h –mknown) in conjunction with the filtered HOCOMOCO motif matrices to identify motifs enriched in common significantly

gained (resp. lost) peaks within common significantly gained (resp. lost) super-enhancers compared to wild-type unique significantly

gained (resp. lost) peaks within wild-type unique significantly gained (resp. lost) super-enhancers. The transcription factors corre-

sponding to the top 10 significantly enriched (Q < 0.05) motifs found for the gained and lost groups were identified and a two-sided

one-sample Mann Whitney U test was performed based on the difference in log-normalized gene expression for these factors be-

tween SUM185 and HCC3153, after removing factors with zero expression in both cell lines.

CyTOF analysis
CyTOF profiling was performed in two batches (CY1 and CY2). 34 TNBC cell lines were profiled in total; 18 cell lines were profiled in

CY1 and 19 were profiled in MB2, with three cell lines (CAL120, CAL51, and HCC38) profiled in both batches.

CyTOF clustering analysis
Clustering analysis of CyTOF data was performed using VorteX clustering environment (v.26).17 The CyTOF dataset was read in to

VorteX using default parameter settings (arcsinh (x/5) transformation, and a maximum of 1,000 rows imported per.fcs file, to limit the

size of the dataset).

Clustering was performed using the X-shift algorithm with Distance Measure ‘‘Euclidean’’. K = 25 was selected by the software as

the optimal number of neighbors used for density estimation, leading to 36 clusters. Visualization was performed in VorteX, using a

minimum spanning tree reconstructed using Euclidean distance.

scRNA-seq analysis
Cell lines: scRNA-seq samples were sequenced in two batches, as described above, one using the 10x v2 chemistry, the other using

the 10x v3 chemistry. In addition, 10x v2 chemistry sequencing data for two additional cell lines, SUM149 and SUM159, was obtained

from.57 Cell Ranger (v.3.1.0) mkfastq was used to create fastq files. UMI count matrices were obtained from fastq files using Cell

Ranger count with expect-cells set to 2,000 for v2 samples and set to 5,500 for v3 samples. Four samples from the v2 sequencing

batch were excluded from downstream analysis due to Cell Ranger warnings (two samples), or aberrantly high cell numbers (two

samples where detected cell numbers were >2.9x the targeted cell numbers).

We applied a two-step filtering procedure within each sample to remove cells with high mitochondrial content and cells with low

numbers of detected genes. First, we calculated the proportion of UMI counts from mitochondrial genes for each cell (mitochon-

drial_read_proportion). The function isOutlier from the R package ‘‘scater’’ (v.1.18.6) was used to remove cells for which the base

2 logarithm of the mitochondrial_read_proportion was greater than 4 median absolute deviations (MADs) above the median value

when considering cells with mitochondrial read proportion less than 50%. Secondly, among the remaining cells, we removed cells

where the base 2 logarithm of the number of detected genes was less than 4 MADs below the median.

For analyses within individual cell lines, we considered all genes detected in 10 or more cells. For each gene i, in each cell j, we

calculated counts per 10,000, eij, by dividing the sample-count for the gene by the total counts across all genes and multiplying

by 10,000. Log-normalized counts were then calculated as the natural logarithm of one plus the counts per 10,000 values. Clustering

and UMAP visualization for individual samples was performed using Seurat (v.3.2.3), using the Seurat standard log-normalization

workflow (v. 3).58 The top 20 principal components were used for all cell lines. The resolution parameter was set to 0.5 to run clus-

teringwith the Seurat function FindClusters. Single cell cluster differentially expressed geneswere identified using the Seurat function

FindMarkers with default parameters.

For analyses involving all samples, downstream analysis was based on genes detected in at least 10 cells across all samples.

Counts per 10,000were calculated as described above.We took steps to try to remove potential artifacts due to differences in chem-

istry, and, where possible, differences due to batch, using four cell lines that were represented in both batches. We found the min-

imum number of cells among the eight samples corresponding to these four cell lines and selected a random subset of this size,

without replacement, from each of the eight samples. The data were initially log-normalized, as described above. We then used

the function rescaleBatches from the R package ‘batchelor’ (v.1.6.3)59 to estimate a scaling difference for each gene based on

the replicated cell subset, and to correct the log-normalized data for v2-sequenced and v3-sequenced cells accordingly. No correc-

tion was applied for genes with zero UMI counts in cells from the replicate cell lines in either batch. Variable features were identified

separately for v2 and v3 cells based on uncorrected log-normalized data using the Seurat function FindVariableFeatures. These fea-

tures were combined using the Seurat function SelectIntegrationFeatures to give a combined set of variable features for the dataset.

The top 25 principal components were used for UMAP visualization.

MOFA factor scores for scRNA-seq data
Log-normalized expression data weremean-centered across all single cells from all samples for each gene.Multiple linear regression

based on weights for all available mRNA features used in the cell line model was then used to calculate MOFA factor scores for Fac-

tors 1–8 for each single cell.
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Clustering of single cells by MOFA factor scores
The function Mclust from the R package ‘mclust’ (v.5.4.6) was used to explore evidence for multiple clusters within scRNA-seq sam-

ples.We used the function to fit ‘‘VVV’’ models (ellipsoidal, varying volume, shape, and orientation) with between one and five clusters

for each single-cell sample, and to extract the log likelihood for each fit. MOFA factors scores for Factors 2, 3, and 6 were used for

clustering.

TNBC subtype signature analysis in scRNA-seq data
Statistical testing of signature enrichment in all samples: For this analysis, data from each sample in the combined dataset containing

all samples was down-sampled to the size of the smallest sample (447 cells). Equally-sized sets of positive and negative signature

genes for each TNBC type were defined, as described above for bulk data. For each retained single cell, we first centered gene

expression for each gene across all retained single cells from all samples. We then calculated a signature statistic as the difference

between the centered log-normalized expression of positive signature genes, and the centered log-normalized expression of nega-

tive signature genes in the single cell. The significance of the expression statistic for each type was estimated using a previously

described bootstrap procedure.57 Briefly, a bootstrap p value for each type was calculated by comparing the observed value to

the same statistic for 1,000 size-matched sets of random positive and negative signature genes in the same cell.

TNBC subtype signature enrichment scores in HDQP1 single cells: Equally-sized sets of positive and negative signature genes for

each TNBC type were defined as described above. Log-normalized expression data for HDQP1 single-cells was centered across all

HDQP1 cells. Statistics for each subtype signature in eachHDQP1 cell were calculated as described above. The enrichment score for

each signature in each cell was calculated as the average difference between the observed statistic and the same statistic for 1,000

size-matched sets of random positive and negative signature genes in the same cell.

Transcriptomic heterogeneity estimation using single-cell data
For each cell j, we estimated the cell’s size factor using the fomula:

bsj =

P
i

cij

10;000
;

where cij is the count for gene i in j, and the sum runs over all genes measured in j.

For each gene i, in each sample, k, we estimated the average expression level of i in k using the formula:

bqik =
1

nk

Xnk
j = 1

cijbsj ;
where nk is the total number of cells in k, and the sum runs over all cells in k.

Analysis was based on the 378 consistently highly expressed genes with bqik> 1 in all samples, after excluding ribosomal proteins

(gene names beginning RP). We used an approach based on that taken in60 to estimate the raw biological variance of each gene in

each cell line. We estimated the biological variance for gene i in sample k, using the formula:

bvik = max ðwik � bik ;0Þ;
where wik is the sample variance of i in k, and bik is a bias correction factor given by:

bik =
bqik

nk

Xnk
j = 1

1bsj
We estimated the raw squared coefficient of variation (SCV) for i in sample k, using the formula:

bq ik =
bvikbq2

ik

A linear mixed effect model, implemented in the R package lme4 (v.1.1–26), was used to model the relationship between raw bio-

logical variance, average expression level, and TNBC type, across samples. To satisfy the model independence assumptions we

excluded the replicate with lower depth for each of the four replicated cell lines, which in each case was the v3-sequenced replicate.

The analysis was based on 330/378 highly expressed genes with bvik> 0 in all samples considered. Exploratory analysis of the data

suggested a model where the logarithm of biological variance is linearly related to the logarithm of average expression level for each

gene (consistent with constant per-gene raw SCV), with gene-specific intercepts. Based on this analysis we chose to investigate the

following model for log vik :

log vik = b1 + b2 log qik + b3tnbc typek +B1i +B2k + ε

whereB1i and B2s are random intercepts corresponding to the gene and sample, respectively, and ε is a normally distributed random

error term. Confidence intervals for the fixed effects were obtained using the R function confint.
Cell Reports 42, 113564, December 26, 2023 35



Resource
ll

OPEN ACCESS
Transcriptomic heterogeneity estimation simulations
We confirmed that the average absolute bias of bqik , bvik , and bq ik across genes was small under relevant parameter values using a

simulation study. For each sample, we created 1,000 simulated UMI datasets for the 378 genes used in this analysis, with

ground truth cell size factors, average gene expression levels, and raw gene SCV values equal to the estimated values for

the cell line. The counts for each gene i and cell j in each dataset were simulated using a negative binomial distribution,61,62

with parameters m = sjqi, size = 1
qi
. Similar to,60 differences between the ground truth size factor and estimated size factors

were ignored. The q; v, and q values were estimated for each gene in each dataset as described above. The estimation bias

for each parameter for each gene in each sample was estimated as the average difference between the estimate and the

true value across simulated datasets.
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