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Abstract  

Background: Identifying molecular and immune features to guide immune checkpoint inhibitor 

(ICI)-based regimens remains an unmet clinical need.   

Methods: Tissue and longitudinal blood specimens from phase III trial S1400I in metastatic lung 

squamous cell carcinoma (SqNSCLC) patients treated with nivolumab monotherapy (nivo) or 

nivolumab plus ipilimumab (nivo+ipi) were subjected to multi-omics analyses including 

multiplex immunofluorescence (mIF), nCounter PanCancer Immune Profiling Panel, whole-

exome sequencing, and Olink.  

Results: Higher immune scores from immune gene expression profiling or immune cell 

infiltration by mIF were associated with response to ICIs and improved survival, except 

regulatory T cells, which were associated with worse overall survival (OS) for patients receiving 

nivo+ipi. Immune cell density and closer proximity of CD8+GZB+ T cells to malignant cells 

were associated with superior progression-free survival (PFS) and OS. The cold immune 

landscape of NSCLC was associated with a higher level of chromosomal copy number variation 

(CNV) burden. Patients with LRP1B-mutant tumors had a shorter survival than patients with 

LRP1B–wild-type tumors. Olink assays revealed soluble proteins such as LAMP3 increased in 

responders while IL-6 and CXCL13 increased in nonresponders. Upregulation of serum 

CXCL13, MMP12, CSF-1, and IL-8 were associated with worse survival before radiologic 

progression. 

Conclusions: The frequency, distribution and clustering of immune cells relative to malignant 

ones can impact ICI efficacy in SqNSCLC patients. High CNV burden may contribute to the 

cold immune microenvironment. Soluble inflammation/immune-related proteins in the blood 

have the potential to monitor therapeutic benefit from ICI treatment in SqNSCLC patients.  
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Translational Relevance 

Identifying molecular and immune features to guide immune checkpoint inhibitor (ICI) regimens 

remains an unmet clinical need. We performed multi-omics analysis of biospecimens from a 

phase III trial LUNG-MAP S1400I that compared ipilimumab combined with nivolumab vs. 

nivolumab monotherapy in patients with metastatic lung squamous cell carcinoma. An overall 

cold tumor immune microenvironment correlated with high chromosomal copy number variant 

burden and was associated with inferior benefit from ICIs. In addition to the immune cell 

density, the proximity and local neighborhood clustering of a subset of immune cells to tumor 

cells also impacted the benefit from ICI therapy. Interestingly, patient survival was decreased 

with LRP1B-mutant tumors, but not with LRP1B-wild type tumors. Many soluble proteins 

related to inflammation or T-cell and dendritic cell activation correlated with clinical outcome 

from ICI therapy. Together, these immune features highlight the potential of biomarker-based 

strategies to select patients for ICI-based regimens and dynamically monitor their response.  
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Introduction 

Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1, 

e.g., nivolumab, pembrolizumab, cemiplimab) or its ligand PD-L1 (e.g., atezolizumab) have 

become pillars of treatment in both frontline and salvage settings for patients with advanced 

non–small cell lung cancer (NSCLC) (1-4). In addition, recent efforts have led to multiple 

approved frontline regimens incorporating chemotherapy and other ICIs with anti–PD-1/PD-L1 

antibodies (5-8). However, in the salvage setting, anti–PD-1/PD-L1 monotherapy remains the 

treatment of choice for ICI-naïve advanced-stage NSCLC (9,10).  

Ipilimumab is an ICI targeting cytotoxic T lymphocyte–associated protein 4 (CTLA-4). 

Its dual inhibition with PD-1/PD-L1 may have synergistic effects on the anticancer immune 

response, given the complementary functions of these two pathways. The combination of 

nivolumab with ipilimumab was demonstrated to have superior efficacy than nivolumab alone in 

patients with advanced melanoma (11,12). For patients with metastatic NSCLC, ipilimumab plus 

nivolumab has been approved by the US Food and Drug Administration by the US Food and 

Drug Administration in the frontline setting with or without concurrent chemotherapy 

(7,8,13,14). In the salvage setting, a recent phase III study, S1400I, evaluated the efficacy of 

nivolumab plus ipilimumab vs. nivolumab monotherapy in patients without previous  ICI 

treatment for squamous NSCLC (SqNSCLC) (15). The study did not show that ipilimumab plus 

nivolumab improved clinical outcomes. However, progression-free survival (PFS) and overall 

survival (OS) curves separated during later follow-up, suggesting that a subset of patients may 

benefit from combination treatment with ipilimumab and nivolumab. 

Understanding the mechanisms underlying response and resistance to ICIs and 

establishing predictive molecular and immune features to identify patients who will benefit the 

most from ICI therapy remain unmet clinical needs. High PD-L1 expression is associated with 

improved outcomes in patients receiving ICI monotherapy (1,8). However, the geographical 

heterogeneity of PD-L1 expression between primary tumors and metastatic sites and even 

between different regions within the same tumors—as well as the potential dynamic changes in 

PD-L1 expression over time—have raised questions about its reliability as a predictive 

biomarker (16,17). Although tumor mutational burden (TMB) has been approved as a predictive 

marker for anti–PD-1/PD-L1 treatment for melanoma and NSCLC, and several other cancer 

types (18), one study found no correlation between TMB or PD-L1 with anti–PD-1 plus anti–
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CTLA-4 therapy in patients with NSCLC (19). Furthermore, the predictive value of PD-L1 and 

TMB becomes less clear when chemotherapy is added. These findings underscore the 

complexity of molecular determinates of the tumor immune microenvironment and response to 

ICIs.  

In this study, we sought to elucidate the immune and molecular mechanisms that affect 

benefit from ICIs in patients with advanced SqNSCLC. Toward this end, we integrated immune 

and multi-omics profiling platforms supported by Cancer Immune Monitoring and Analysis 

Centers (CIMAC) in the current study. Specifically, we performed multiplex 

immunofluorescence (mIF), gene expression profiling (ncounter PanCancer Immune Profiling 

Panel), whole-exome sequencing (WES), and Olink proteomics on tissue and blood specimens 

from the S1400I trial to identify molecular or immune factors associated with better prognoses in 

patients treated with  anti–PD-1 monotherapy vs. anti–PD-1/CTLA-4 dual combination.  

 

Material and Methods 

Study population and human tissue samples 

Lung-MAP (S1400I, NCT02785952) was a multicenter, open-label, phase III randomized 

clinical trial. The substudy Lung-MAP-I (S1400I) was conducted from December 18, 2015, to 

April 23, 2018, through the National Clinical Trials Network and led by the SWOG Cancer 

Research Network. The study was conducted in accordance with the Declaration of Helsinki and 

the Lung-MAP design has been described previously (15). Briefly, the trial compared nivolumab 

plus ipilimumab (nivo+ipi) with nivolumab monotherapy (nivo) in patients with chemotherapy-

pretreated, immunotherapy- naïve, e advanced sqNSCLC. Two hundred fifty-two patients were 

randomly assigned to receive nivo+ipi (n = 125 or nivo (n = 127). The clinical efficacy endpoints 

were OS, PFS, duration of response, and best objective response by RECIST 1.1. Each site 

required approval by the US National Cancer Institute central institutional review board or 

approval by their local institutional review board. Written, informed consent was required for all 

patients prior to registration.  

Available tumor tissue samples and blood samples (N = 160, Supplementary Figure 1) 

submitted for Lung-MAP screening were provided by the SWOG tissue bank. The clinical 

information for correlative studies in collaboration with the CIMAC–Cancer Immunologic Data 

Commons (CIDC) Network are shown in Supplementary Table 1 across the different assays.  
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Multiplex immunofluorescence staining and analysis  

Multiplex immunofluorescence (mIF) staining was performed in 82 screening tumor 

tissue samples (nivo+ipi = 38, and nivo = 42), (Supplementary Table 1). Unstaining slides from 

formalin-fixed, paraffin-embedded (FFPE) tissue were received from the SWOG bank and 

stained using methods previously described and validated (20). Briefly, 4 µm-thick FFPE tumor 

sections were stained using an automated staining system (Leica Microsystems, Buffalo Grove, 

IL) and two mIF panels with the following antibodies: Panel 1, cytokeratin (CK), CD3, CD8, 

PD-1PD-L1, and CD68 and Panel 2, CK, CD3, CD8, CD45RO, granzyme B (GZB), and 

FOXP3. Antibody clones, dilutions and RRIDs are included in Supplementary Table 2 and 

have been previously described (20). All the markers were stained in sequence using their 

respective fluorophore contained in the Opal 7-Color Automation IHC Kit (catalog # 

NEL821001KT; Akoya Biosciences, Waltham, MA). The slides were scanned using the 

Vectra/Polaris 3.0.3 (Akoya Biosciences) at low magnification, 10× (1.0 µm/pixel) through the 

full emission spectrum and positive tonsil controls from the run staining to calibrate the spectral 

image scanner protocol (21). A pathologist selected representative areas inside the tumor using 

regions of interest for scanning in high magnification by the Phenochart Software image viewer 

1.0.12 (931 × 698 µm size at resolution 20× = 0.5 μm/pixel) to capture various elements of tissue 

heterogeneity. Marker co-expression was employed to identify malignant cells (CK+), malignant 

cells expressing PD-L1 (CK+PD-L1+), and the cellular subsets of tumor-associated immune 

cells (TAICs) listed in Supplementary Table 3. Densities of each cell phenotype were 

quantified as the number of cells/mm
2
 in the tumor compartment characterized by group or nests 

of malignant cells, in the stroma compartment characterized by the fibrous tissue present 

between the tumor nets, and in both compartments described as a total. PD-L1+ malignant cells 

were also expressed in percentages. The data were consolidated using R studio 3.5.3 (Phenopter 

0.2.2 packet; Akoya Biosciences). 

 

Spatial point pattern distribution analysis 

Using the point pattern distribution of the cell phenotypes relative to malignant cells, we 

measured the distance from malignant cells (CK+) to TAICs included in each mIF panel using R 

studio 3.5.3 (Phenopter 0.2.2 packet). We applied the median nearest neighbor function from 

malignant cells (CK+) to different cell phenotypes to determine where these TAICs were 
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located; specifically, whether the TAICs were close to (i.e., equal to or less than the median 

distance) or far from (i.e., more than the median distance) the malignant cells (CK+) and 

associated with clinical outcomes.  

Spatial organization of cells by type  

Cells were subset by phenotype using the markers in the mIF panels and examined as the 

following: Tumor/PD-L1+ (CK+PD-L1+), Tumor (CK+), Other-Tcells (CD3+), Other-

Tcells/PD-1+ (CD3+PD-1+), Macrophages(CD68+), Macrophages/PD-L1+(CD68+PD-L1+), 

CTLs(CD3+CD8+) , CTLs/PD-1+(CD3+CD8+PD-1+), CTLs/GB+(CD3+CD8+GB+) and 

Tregs(CD3+CD8-Foxp3+). The above phenotypes were used to visualize the spatial organization 

of cells by type. This analysis was carried out in R version 4.2.0 (R studio 2022.07.2). 

Spatial neighborhood  

Using the marked planar point pattern representations of each mIF image, we calculated the 

spatially varying probabilities for each of the phenotypes (described above). We used the spatstat 

toolbox (22) which provides the relrisk function to identify areas of segregation for a multitype 

(markers >2) marked point pattern. This function estimates for each phenotype, the spatially 

varying probability or the ratios of the probabilities, using kernel smoothing. The output of this 

function was used to plot the contour of the spatially segregated neighborhoods for each 

phenotype. 

Identifying cell clusters in the local neighborhood  

We identified cell clusters in each image using Euclidean distance and a hierarchical clustering 

method. A minimum cluster size of 10 cells and distance <= 20 microns was the requirement for 

clustering. The distance based hierarchical clustering yielded the neighborhood information in a 

matrix. The cells that did not form clusters were labelled "Free_cell". The relative percentages of 

cells in each phenotype within a cluster was used to generate the heatmap. We used the SPIAT 

library (SPIAT version 1.0.4) to identify cell clusters and made additions to the SPIAT functions 

as required for our analysis using R version 4.2.0. 

 

NanoString gene expression profiling 

DNA and RNA were co-extracted from FFPE specimens received from the SWOG bank 

(Supplementary Table 1) and subjected to whole exome sequencing and gene expression. The 

RNA from a total of 38 FFPE samples (nivo = 23 and nivo+ipi = 15) passed the quality control 
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and was run on the nCounter platform using the PanCancer Immune Profiling Panel (730 

immune-related and 40 housekeeping genes) per the manufacturer’s instructions. Briefly, 

samples were hybridized overnight at 65°C to probes, excess probes were washed using the 

automated prep station and then imaged on the digital analyzer. All runs included a Human 

Reference RNA control for batch correction. Data were processed and normalized with 

NanoString’s nSolver analysis software (23). All samples passed the post-run QC metrics, and 

no batch effects were evident in the runs. In addition, gene expression profiles were 

deconvoluted by TIMER and nSolver advanced analysis tools to infer immune cells correlated to 

clinical outcomes. 

 

Whole-exome sequencing data analysis 

WES analysis was conducted using the CIDC WES pipeline on tumor DNA from 50 

tumors (nivo = 28 and nivo+ipi = 22, Supplementary Table 1) that passed the quality control. 

DNA from paired peripheral blood mononuclear samples was used as germ line control. WES 

implements Gene Analysis Toolkit (24) best practices and identifies somatic variants using 

Sentieon TNScope and Haplotyper algorithms (25), respectively. Somatic variants are annotated 

using the Variant Effect Predictor software (26). The pipeline uses an ensemble of three callers, 

CNVkit (27), Sequenza (28), and Facets (29), to characterize tumor copy number variation 

(CNV), and the CNV segments called by at least two callers were used to generate a high-

confident consensus set. Sequenza and FACETS were used to estimate tumor purity and also 

PyClone-VI was utilized to infer clonal status of mutations (30). PyClone v 0.13.1 (31) was used 

to perform mutation clonality analysis. It is a Bayesian clustering method that enables mutations 

to be grouped into putative clonal clusters by integrating copy number, tumor purity (obtained 

from Sequenza), and variant allele frequency data.  

 

Olink serum soluble analyte assay 

We performed circulating serum analyte measurements using proximity extension assay 

(Olink) in 561 serum samples collected longitudinally from 160 patients (Supplementary Table 

1). A series of 92 proteins, such as cytokines and soluble immune checkpoints included in the 

“immuno-oncology” panel, were measured as previously described (32). Protein levels were 
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normalized using internal positive and negative controls and quantified as log2 protein 

expressions (NPX), which were subsequently used as input for downstream analysis. 

 

Correlative analysis and statistical methods 

To evaluate if the baseline biomarkers are prognostically associated with survival, we 

dichotomized biomarker data by the median and performed univariate survival analysis with the 

log-rank test. OS and PFS were evaluated. The Cox proportional hazard regression model was 

used for multivariate survival analysis (R package Survival, https://CRAN.R-

project.org/package=survival) (33). We included TMB (≥10 or <10 mutations per Mb), PD-L1 

(≥5 or <5 %), and other statistically significant biomarkers identified from univariate analysis in 

Cox models. Thresholds for TMB and PD-L1 were determined from previous clinical studies 

(18). To assess if continuous biomarker data are associated with response and other clinical 

variables, we used nonparametric tests: Spearman’s rank correlation for continuous clinical 

variables, Mann-Whitney U test for categorical clinical variables with two groups, and Kruskal-

Wallis test for categorical variables with more than two groups. In parallel, we also dichotomized 

biomarker data and used the chi-square test for a robust assessment with responders. The 

Benjamini-Hochbert (BH) method (34) was used for multiple-testing adjustment of P values. The 

analysis was performed on all samples and on samples in two treatment arms separately.  

To explore the association of each baseline protein level with clinical outcomes from the 

Olink data, we used logistic regression models for best objective response and Cox proportional 

hazard models for PFS and OS (R package Survival, https://CRAN.R-

project.org/package=survival, RRID: SCR_021137) (33). In separate regression models, 

univariate analyses included only the protein expression values, while the multiple variable 

analyses adjusted for additional covariates (i.e., treatment, age, sex, race, smoking). Then, to 

investigate the longitudinal changes in serum protein associated with treatment, we used mixed 

linear models (R package Dream and lme4) (35,36) and the timepoints baseline, cycle 2 week 3, 

cycle 4 week 7, and cycle 5 week 9 to quantify the effect of these variables and additional 

relevant clinical parameters. These were analyzed with the treatment arms nivo+ipi and nivo. In 

our models, each protein NPX was considered an independent variable. In contrast, phase, 

timepoints, and treatments were considered dependent variables and other covariates as random 

effects. This approach allowed us to quantify the variance across proteins and approximate 
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degrees of freedom of the hypothesis test for each protein, thereby minimizing false-positive 

results. We used F-tests for multiple coefficient comparisons and moderate t-tests for single 

coefficient comparisons. 

To identify the differences between responders and nonresponders at each timepoint and 

longitudinally, we used time as a dependent variable. We jointly modeled survival with cytokine 

expression (R packages lme4, rstanarm: Bayesian applied regression modeling via Stan 

(RRID:SCR_024605), bayestestR, bayesplot: Plotting for Bayesian Models (https://mc-

stan.org/bayesplot/, RRID: SCR_024588) (36,37) to investigate the association of longitudinal 

protein levels with survival outcomes. The model used Cox proportional hazards and liner mixed 

regression and assessed the association of dynamic biomarker changes with survival outcomes. 

In the random intercept, the independent variable was the number of months from baseline to 

biomarker collection, set as a natural spline with three knots (at most three changing time points 

between baseline and progression/death). The dependent variable was the Olink analyte NPX 

value. In the survival analysis component, the independent variable includes the treatment arms. 

The convergence of the Markov Chain Monte Carlo samples was assessed using several 

diagnostics: potential scale reduction factor, autocorrelation and trace plots, adequate sample 

size, and Monte Carlo Standard Error (32,38-40). Finally, we used the false discovery rate (FDR) 

as the preferred method to correct for multiple hypothesis testing. The thresholds for significance 

in the mixed linear models for differential expression tests were a log2 fold change of at least 0.5 

and an FDR < 0.05. The joint model’s threshold for significance was at least 1 unit increase in 

log2 NPX expression and FDR < 0.05. 

For integrative analysis, we applied recursive partitioning tree analysis (RPART, rpart library in 

R, https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf) and random forest 

(41,42) (RF, randomForest and randomForestSRC libraries in R) on Olink (N=159) and mIF 

(N=82) data. We fitted RPART tree using responder status as the dependent variable, 92 baseline 

level Olink proteins and 17 mIF markers as predictors. We also created decision tree survival 

prediction model. Separate RPART trees were fitted for mIF markers from different 

compartments along with Olink proteins. The minimum number of observations in a node for a 

split was set to be 15; 10-fold cross-validation was carried out and results used for tree-pruning. 

For RF, we used 81 samples with both Olink and mIF data. Bootstrap the data to create bootstrap 

samples; grow a survival tree for each bootstrap sample with split criteria based on the log-rank 
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statistics; continue the recursive partition; and calculate importance of each predictor by 

averaging over the forest.  

 

Data Availability 

In conjunction with the clinical study principal investigator/chair, the NCI-sponsored network 

and CIDC, we will make available de-identified data publicly available by request under the 

dbGaP PHS accession number: phs003412.v1.p1. Questions and requests for additional data can 

be directed to the corresponding author.  

 

Results 

Clinical characteristics 

There were 31 responders (19.4%), including complete responses, partial responses, and 

unconfirmed partial/complete response; 63 patients with stable disease (39.4%); and 61 patients 

(38.1%) with progressive disease (i.e., increasing disease and symptomatic deterioration). 

Overall, 31 patients (19.4%) were alive at the end of the study, and the median OS was 10.02 

months (range 0.3–40.3). One hundred and forty-eight patients (92.5%) had disease progression, 

with a median PFS of 3.4 months (range 0.3–36.6, Supplementary Table 1).  

 

An active immune infiltration is associated with benefit from ICI treatment 

We first analyzed the mIF and gene expression profiling data from baseline tissue 

samples taken before ICI treatment to identify immune features associated with clinical benefit. 

mIF data revealed higher densities of various immune cells in the stroma compartment compared 

to the tumor compartment across the whole cohort (nivo+ipi and nivo arms), with no significant 

differences between the nivo+ipi and nivo arms (Supplementary Table 4). The overall immune 

cell densities were higher in the responders across both arms, although the difference did not 

reach statistical significance. In the whole cohort, higher median densities of PD-1+ cytotoxic T 

cells (CTLs; CD3+CD8+PD-1+) in the stroma (>4.1 cells/mm
2
, P = 0.042), presence of GZB+ 

CTLs in the tumor compartment (>0 cells/mm
2
, P = 0.011), and higher median densities of 

memory T cells (CD3+CD45RO+; >23.4 cells/mm
2
, P = 0.041) and PD-1+ T cells (CD3+PD-

1+; >16.0 cells/mm
2
, P = 0.023) in the total compartment (tumor plus stroma) were associated 

with longer PFS (Supplementary Table 5). Similarly, transcriptomic analysis demonstrated that 
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patients having tumors with a higher expression of genes associated with myeloid infiltration, 

immune recruitment, and inflammation had superior clinical outcomes in the whole cohort 

(Table 1 and Supplementary Table 6). The associations between higher expression of CD163, 

BLNK, IRF1, FCGR2A with better OS (P < 0.05) and higher expression of MAPK11 with worse 

OS remained significant in subsequent multivariate analyses after adjustments for known 

predictive biomarkers, including TMB and PD-L1.  

In the nivo arm, higher densities of memory T cells (CD3+CD45RO+) in the total 

compartment (median > 24.6 cells/mm
2
, P = 0.028) and memory/regulatory T cells (CD3+CD8-

CD45RO+FOXP3+) in the total compartment (median > 4.6 cells/mm
2
, P < 0.001) and the 

stroma compartment (median > 12.0 cells/mm
2
, P = 0.049) were associated with longer PFS 

(Table 2 and Figure 1A and 1B). Higher densities of memory/regulatory T cells (CD3+CD8-

CD45RO+FOXP3+) in the total compartment (median > 4.6 cells/mm
2
, P = 0.026) were 

associated with better OS (Table 2 and Figure 1C). In the nivo+ipi arm, higher densities of PD-

1+ T cells (CD3+PD-1+) in the total compartment (median > 16.0 cells/mm
2
, P = 0.0347) and 

the presence of GZM+ CTLs (CD3+CD8+GZB+) in the tumor compartment (>0 cells/mm
2
, P = 

0.0154) were associated with longer PFS (Table 2 and Figure 1D and E). Conversely, higher 

densities of regulatory T cells (Tregs; CD3+CD8-FOXP3+) in the total compartment (median > 

12.4 cells/mm
2
, P = 0.0418) were associated with worse OS (Table 2 and Figure 1F).In the 

nivo+ipi arm, deconvolution of transcriptomic profiling data by TIMER and nSolver 

demonstrated significantly higher total immune cells (CD45+), a higher exhausted CD8+ T-cell 

score, and a higher neutrophil score in responders vs. nonresponders (P < 0.05, Figure 1G to 

1I), further supporting that overall higher immune infiltration is associated with superior clinical 

benefit from ICI treatment.  

 

High infiltration of cytotoxic T cells is associated with exceptional response to ICIs  

Next, we specifically investigated exceptional responders, defined as patients who had no 

progression for at least 18 months and were still alive by 24 months, vs. early progressors, who 

survived more than 1 month but had progressive disease and died within 6 months after initiating 

ICI treatment. By these definitions, there were 11 exceptional responders and 44 early 

progressors across the total trial cohort (Figure 2A). There were more exceptional responders in 

the nivo+ipi arm than in the nivo arm (7 of 73 vs. 4 of 87, P = 0.35). Among these patients, 8 
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exceptional responders and 21 early progressors had tissues available for mIF, and 6 exceptional 

responders and 8 early progressors had tissues available for gene expression analysis.  

By mIF, we observed higher densities of CTLs (CD3+CD8+) and memory CTLs 

(CD3+CD8+CD45RO+) in the total compartment in exceptional responders than in early 

progressors (CTLs: median, 152.1 vs. 27.3 cells/mm
2
; P = 0.032; memory CTLs: median, 31.2 

vs. 2.1 cells/mm
2
; P = 0.040; Supplementary Table 7). Representative images from an 

exceptional responder are shown in Figure 2B and 2C. Moreover, in the tumor compartment, 

we observed higher densities of GZB+ CTLs (CD3+CD8+GZB+) in the exceptional responders 

than the early progressors (median, 3.6 vs. 0 cells/mm
2
, P = 0.027) (Figure 2D). Representative 

images from an early progressor showing a lower density of immune infiltration are shown in 

Figure 2E and 2F.  

Furthermore, distinctive spatial neighborhoods and cell organization in TME were 

observed in exceptional responders (n=6) relative to early progressors (n=6) (Figure 2 (G-J) and 

Supplementary Figures 2 and 3). Shown in Figure 2G, Supplementary Figures 2A and 3A is 

the distribution of different cell subsets relative to each other, with higher immune infiltration 

and higher CTL densities in the TME of exceptional responders vs. early progressors. We then 

used spatially varying probabilities of different cell phenotypes to determine the segregation 

among immune subsets and malignant cells, and a contour plot to represent the neighborhoods 

within the TMEs. These analyses revealed a higher spatial segregation of immune cell subsets 

relative to malignant cells in the early progressors as compared to the exceptional responders 

(Figure 2H, Supplementary Figures 2B and 3B) in line with above observation that higher 

densities of CTLs in the tumor region positively associated with survival. Through distance-

based hierarchical clustering, we identified local cell clusters within the TME and observed 

distinct compositions in exceptional responders vs. early progressors. The clusters (cells >=10 

within interacting distance 20 microns) in exceptional responders often consisted of CTLs and 

other-T cell populations in the proximity to tumor cells (Figure 2 I-J, Supplementary Figures 

2C-D, 3C-D). Finally, infiltration of neutrophils inferred from gene expression profiling data 

was significantly higher in exceptional responders than early progressors (P = 

0.029; Supplementary Figure 4). 

 

Close proximity of T cells and malignant cells is associated with benefit from ICIs 

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-23-0251/3410244/ccr-23-0251.pdf by guest on 20 February 2024



 16 

Given the recognized importance of distance between different cells and the clustering of 

CTLs and tumor cells observed in exceptional responders, we expanded our analysis to 

understand the spatial relationship between the cell types associated with clinical outcome 

described above with other cells within the tumor microenvironment (43,44). In the whole 

cohort, shorter distances from malignant cells (CK+) as well as PD-L1+ malignant cells 

(CK+PD-L1+) to CTLs (CD3+CD8+; median, 139 µm and 148 µm) were associated with better 

PFS (P = 0.045 and P = 0.027, respectively); and shorter distances from malignant cells (CK+) 

to GZB+ CTLs (CD3+CD8+GZB+) were associated with significantly longer PFS (P = 0.035) 

and a trend toward longer OS (P = 0.054; Figure 3A to 3E). In the nivo+ipi arm, shorter 

distances of CTLs (CD3+CD8+) as well as GZB+ CTLs (CD3+CD8+GZB+) from malignant 

cells (CK+; P = 0.045 and, P = 0.026, respectively) and shorter distances between CTLs 

(CD3+CD8+) from PD-L1+ malignant cells (CK+PD-L1+; P = 0.033) were associated with 

longer PFS (Figure 3F,3G and 3H). In addition, shorter distances of GZB+ CTLs 

(CD3+CD8+GZB+; median, 245 µm) from malignant cells (CK+) were associated with longer 

OS (P = 0.045; (Figure 3I). Taken together, these results suggest that the immune cells’ density 

and spatial distribution may impact response to ICI therapy.  

 

High CNV burden is associated with cold immune infiltration  

We next performed WES (n = 50) with the intent of identifying the genomic basis 

underlying the immune features associated with benefit from nivo+ipi vs. nivo in these 

metastatic squamous cell carcinomas. A total of 30,081 non-silent mutations were detected with 

transversions, particularly C>A, as the predominant substitutes, which was expected because 

most patients were smokers (Supplementary Figure 5A). The commonly mutated cancer genes 

included TP53, LRP1B, CDKN2A, AR1D1A, and PIK3CA (Supplementary Figure 5B). High 

CNV burden was associated with a colder tumor immune microenvironment, as evidenced by 

lower infiltration levels of overall CD3+ T cells from mIF and lower levels of various immune 

signatures derived from gene expression profiling (Supplementary Figure 6A and 6B). 

Importantly, CNV burden was not associated with estimated tumor purity, suggesting the 

correlation between high CNV burden and cold tumor immune microenvironment was not due to 

relative high tumor cell density leading to dilution of immune cells. Taken together, these results 

indicate that chromosomal instability may be an underlying genomic feature associated with 
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immune evasion in metastatic SqNSCLC. Among the commonly mutated cancer genes, 

mutations in LRP1B, a recently recognized potential regulator of the inflammatory response, was 

associated with less infiltration of GZB+ CTLs (CD3+CD8+GZB+; Supplementary Figure 7A) 

(45,46). Interestingly, LRP1B mutations were enriched in nonresponders but not in responders 

(18/19 vs. 2/11, P = 0.049). Furthermore, patients with LRP1B mutations had significantly (P = 

0.008) shorter PFS (Supplementary Figure 7B) and numerically shorter OS in the overall 

cohort (Supplementary Figure 7C). LRP1B-mutant tumors were not associated with short PFS 

in the nivo+ipi arm (Supplementary Figure 7D) but were in the nivo arm (P = 0.033; 

Supplementary Figure 7E).  

 

Dynamic changes in peripheral blood cytokines are associated with benefit from ICIs  

Blood-based biomarkers are attractive because they are noninvasive, dynamic, and less 

impacted by intra-tumor heterogeneity than tissue-based markers (47). We performed Olink 

proximity extension assay using the immuno-oncology panel assaying a series of 92 proteins in 

561 serum samples collected longitudinally from 160 patients. Using mixed models to account 

for demographic and relevant clinical covariates with multiple testing adjustments, several serum 

chemokines (CXCL9, CXCL10, CXCL13, CCL19) and activated T-cell markers (PD-1, IFN-, 

IL-12, IL-10) were found durably increased from baseline with either nivo or nivo+ipi, (Figure 

4A and 4B) indicating the ICIs’ immune regulating effect. Multiple markers of immune 

activation and priming (ICOS-L, LAMP3/DC-LAMP, IL-4, IL-13, NRC1, CD5) were found 

increased at baseline or early during treatment in responders, regardless of treatment type (P < 

0.05; Figure 4C and 4D), in line with associations of these important immune processes with 

clinical response to ICI. Conversely, macrophage-derived and hyperinflammation markers, such 

as IL-6, IL-8, CXCL13, CSF-1, TNFSF14/LIGHT, and CCL23, as well as likely stromal or 

tumor-derived markers, such as VEGFA, HGF, and HO-1, were significantly upregulated in 

nonresponders at baseline or after ICI preceding radiologic progression, with  some differences 

based on treatment received for CXCL13 and CSF-1 (P < 0.05; Figure 4C and 4D). Joint 

modeling of survival with Olink analytes showed an increased risk of death (HR > 1) with higher 

longitudinal serum levels of CXCL13, MMP12, CSF-1, and IL-8, which was confirmed with 

independent Kaplan-Meier analyses based on median protein levels at baseline (Figure 4E). 

Similar results were generally observed in the subset of patients with extreme outcomes 
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(exceptional responders and early progressors), where LAMP3/DC-LAMP was higher while 

CXCL13, CCL23, and TNFSF14 were lower in exceptional responders at baseline compared to 

nonresponders (Figure 4F, P < 0.05). Together with the above-described data, and considering 

only baseline markers, these results suggest that an activated T cell signature (cytotoxic effector 

T cells and DC-LAMP) was important for responsiveness to treatment with either nivo or 

nivo+ipi, while a hyperinflammatory milieu (IL-6, IL-8, CXCL13, CCL23, TNFSF14/LIGHT, 

CSF-1, MMP12) had an adverse impact on response and OS. 

 

Integrative analysis of immune features across different platforms   

The anti-tumor immunity and response to ICIs is often determined at different molecular 

levels. The multiomics profiling in this study provided a unique opportunity for integrative 

analysis to understand the molecular and immune features associated with ICI benefit. We first 

performed recursive partitioning on Olink, mIF, Nanostring, and WES data for classification of 

responders (Supplementary Figure 8A and B). We identified that proteins from Olink provide 

good prediction on response. However, mIF markers did not contribute significantly in the 

decision tree, which might be due to relatively small sample size for mIF (n=159 for Olink and 

n=82 for mIF). We next created a decision tree survival prediction model and observed that 

Cytotoxic.T.cells.antigen.experienced (CD3+CD8+PD-1+) together with IL6, LAG3 and 

MICA.B separate patients into sub-populations with different survival. Furthermore, we applied 

random forest classifier, which identified Cytotoxic.T.cells.antigen.experienced (CD3+CD8+PD-

1+) and IL6 as important variables. Nanostring and WES did not contribute to the association 

between omics markers and outcomes likely due to insufficient samples with data from these 

platforms. 

 

Discussion 

Identifying novel biomarkers for ICI response is challenging because the molecular 

determination of tumor microenvironment and host immune response is complex and 

heterogeneous across different patients. A large sample size to control inter-patient heterogeneity 

and multi-omics to identify the determinates at different molecular levels are ideal but 

challenging. Therefore, maximizing the use of clinical, pathological, molecular data and learning 
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from each patient, particularly from clinical trials and careful analysis is key to pave the way to 

advance our understanding and ultimately the efficacy of ICI.  

In this study, we performed mIF, gene expression profiling, WES, and OLINK on the 

previous samples from S1400I and identified known and novel molecular features associated 

with nivo monotherapy vs. nivo+ipi combination. Responders demonstrated higher densities of 

multiple immune cell types defined by mIF. Analysis of CTL populations revealed that GZB+ 

CTLs (CD3+CD8+GZB+) located in the tumor compartment were associated with better PFS. 

This was corroborated by analyzing the spatial organization of cell phenotypes, whereas higher 

immune cell population in the tumor region was seen in the TME of exceptional responders than 

that of early progressors. On the other hand, higher densities of Tregs (CD3+CD8-FOXP3+) in 

the total compartment correlated with worse OS in the nivo+ipi arm. This highlights the 

emerging dichotomy regarding the impact of ICI therapies on Treg subsets and function (48), as 

these combinations may not modulate some Treg subsets and dominance of CTLs is needed to 

overcome local immune suppression. Conversely, higher densities of memory T cells 

(CD3+CD45RO+) and regulatory/memory T cells (CD3+CD8-CD45RO+FOXP3+) were 

associated with better PFS in the nivo monotherapy arm. As PD-1 targeting has been shown to 

result in the re-activation of T cells already present within the tumor immune microenvironment, 

the presence of regulatory/memory T cells at baseline may be an essential biomarker to delineate 

the need for inclusion of ipilimumab as opposed to a nivolumab alone approach. Estimating the 

immune subsets using TIMER and nSolver software demonstrated that a higher immune 

presence was associated with improved outcome. These results emphasize that an active immune 

response within the tumor microenvironment is required for a favorable clinical outcome in this 

setting, which is supported by multiple findings identifying mechanisms of response to ICI-based 

therapeutic strategies across various cancer types (49-51).  

The tumor microenvironment is composed of various immune cells and stroma cells 

entangled with cancer cells. In addition to the densities of different cells, the spatial distribution 

and proximity among various cell types are also essential features with important impact on the 

functional status of the tumor immune microenvironment (52,53). mIF data from this study 

provided an opportunity to assess the spatial relationship of different cellular components within 

the tumor immune microenvironment and their association with clinical outcomes from ICI 

treatment. Using the spatial point metrics through the nearest neighbor analysis, we observed that 
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tumors with higher densities of GZB+ CTLs close to malignant cells were associated with better 

PFS and OS in the nivo+ipi arm, suggesting that cell-to-cell distribution and specially CTLs play 

an important role in response to ICIs as showed by others studies in NSCLC (54). The 

organization of cells into clusters based on distance also demonstrated that the CTLs and 

malignant cells cluster more frequently in exceptional responders than early progressors 

suggesting a pre-formed anti-tumor response that is aided by the ICI. 

We used WES to identify genomic features underlying particular immune features and 

found that a higher CNV burden was associated with a lower level of immune cell infiltration 

overall. Similarly, CNV burden was negatively associated with immune scores derived from 

immune gene expression profiling. These findings are in line with previous findings in different 

cancer types suggesting that chromosomal instability may be a common genomic alteration 

underlying immune evasion across human malignancies (53,55-58). Interestingly, we also found 

that patients with LRP1B-mutant tumors had a reduced survival compared to patients without 

LRP1B mutations. LRP1B has been identified as a putative tumor suppressor and is frequently 

inactivated in NSCLCs (45). Recently, LRP1B mutation was reported to be associated with better 

prognosis in melanoma and NSCLC after anti–PD-1 therapy (46). However, in our cohort, we 

observed that LRP1B mutation was associated with a worse OS and PFS in both the nivo 

monotherapy arm and nivo+ipi combination therapy arms. It is still unclear whether the 

difference was due to different histology (predominantly adenocarcinoma in the previous study 

vs. exclusively squamous cell carcinoma in the current study) or different ICI (anti–PD-1 vs. 

anti–PD-1 with/without anti–CTLA-4) or low sample size. Of note, the impact of LRPB1 

mutations on cancer biology and response to ICIs has not been clearly defined in different 

cancers. For example, a study on renal clear-cell carcinoma reported worse prognosis and 

suppressive antitumor immunity when LRPB1 was overexpressed (59), and another found that 

LRPB1 mutations were associated with inferior clinical outcomes after ICI treatment in 

hepatocellular carcinoma patients (60).  

Although tissue-based assays remain the gold standard for molecular profiling for 

oncology practice, liquid biopsy, particularly peripheral blood–based assays, have gained more 

attention for molecular profiling and disease monitoring across various cancers because they are 

noninvasive, “real-time,” and less affected by intra-tumor heterogeneity (61,62). In the era of 

immune-oncology, the Olink soluble protein detection platform has emerged as a promising tool 
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to assess and monitor host immune response. Using Olink, we identified a high level of pro-

tumorigenic factors, such as VEGFA and CCL23, and inflammatory markers, such as IL-6, IL-8, 

and MMP-12, that were associated with inferior survival in this cohort of patients. These 

findings suggest that general inflammation is detrimental in the context of cancer and ICI 

therapy. In contrast, proteins involved in T-cell and NK activation, such as LAMP3/DC-LAMP, 

IFN-/IL-4/IL-13, and NRC-1, were associated with improved outcomes after ICI therapy. It was 

unexpected that a high level of CXCL13 was associated with poor response to ICI therapy and 

shorter survival, given the recent studies reporting this chemokine working together with DC-

LAMP and playing essential roles in the establishment of tertiary lymphoid structures in NSCLC 

(63). It is possible that the relatively high levels of circulating CXCL13 in the serum do not 

reflect relatively rare CD4+ T cell–derived tumor tissue–specific expression of CXCL13, and 

this emphasizes the limitations of soluble analytes as a surrogate for local tumor events. Some 

analytes, such as CXCL9/10 and soluble PD-1, were dynamically increased with treatment and 

marginally associated with outcomes in exceptional responders, in line with previous reports 

(64). Of particular interest, other markers showed the strongest association with objective 

response during ICI treatment, e.g., lower CSF-1 or IL-6 or higher IL-13 at cycle 2. This is 

reminiscent of findings from melanoma studies in which the on-treatment biopsy was more 

informative for long-term benefit from ICIs than the baseline biopsy, as the actual changes after 

treatment reflect the host immune system’s response to ICIs more accurately (65,66). Although 

soluble analytes are not ideal predictive biomarkers to select an optimal initial treatment 

regimen, if validated, these markers will be extremely helpful in switching ineffective therapy to 

effective alternatives to save time and potential toxicity, which is critically important for patients 

with stage IV lung cancers, for whom time and quality of life are essential attributes. 

Additionally, these on-treatment markers are also valuable in distinguishing pseudoprogression 

from real progression—another critical clinical dilemma that the oncologists face in the era of 

immuno-oncology. 

As a post-hoc profiling of samples from a completed clinical trial, our study has several 

inherent limitations, including inadequate tumor specimen availability, which precluded us from 

generating comprehensive data integration from all platforms; imbalanced distribution of 

samples from the nivo vs. nivo+ipi arms or responders vs. nonresponders; inadequate tissues for 

multiomic analysis and cross-platform integrative analyses; and lack of detailed information 
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regarding the time and anatomic sites of tumor specimens, which limited our ability to perform 

in-depth, organ-specific analysis. In spite of these challenges, integration of peripheral cytokine 

profiling and cellular profiling within the TME confirmed our single platform findings 

highlighting the negative association with hyper-inflammation with reduced PFS and the 

presence of PD-1+ CTLs in the TME with increased survival. Finally, while we presented 

several candidates in this study, we recognize the need for additional validation and replication 

of our findings. Specifically, several circulating serum proteins, such as IL-6-8, CSF1, MMP12, 

and CXCL13 are promising candidates for future prospective or post-hoc confirmatory studies 

due to their ease of collection and quantification from blood. In addition, investigation of tissue 

composition using spatial profiling technologies to better understand the complex interplay 

between tumor tissue and immune infiltrating cells may shed light on the mechanisms of 

immune-tumor cell-cell interactions and identify key biomarkers that can identify patients who 

will have the most benefit from ICIs. As a proof-of-principle study, using the S1400I trial as an 

example, we showcased that multi-omics, multi-institutional analyses of patient samples are 

feasible and can provide valuable insights for future trial development, which is one of the major 

goals of the CIMAC-CIDC Network.   
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Table 1. Associations of genes with outcomes by arm using NanoString.  

 

Arm Gene Outcome HR CI P 

n
iv

o
 

FADD OS 3.63 1.32-9.93 0.002 

CLEC4C OS 3.06 1.16-8.09 0.009 

DNAJC14 OS 2.96 1.13-7.79 0.010 

CREB5 PFS 4.04 1.41-11.56 <0.001 

FADD PFS 2.79 1.08-7.19 0.007 

IL-19 PFS 2.65 1.04-6.75 0.009 

PIN1 PFS 0.36 0.15-0.90 0.005 

n
iv

o
+

ip
i 

CCL22 OS 4.26 1.16-15.66 0.006 

CD163 OS 0.21 0.06-0.71 0.007 

CXCL10 OS 0.22 0.06-0.74 0.009 

CXCL11 OS 0.22 0.06-0.74 0.009 

IFI27 OS 0.22 0.07-0.76 0.010 

ITGB3 OS 0.17 0.05-0.62 0.002 

MAPK11 OS 4.48 1.20-16.68 0.004 

MAPK8 OS 0.19 0.06-0.67 0.004 

C1R PFS 0.22 0.07-0.75 0.010 

C1S PFS 0.21 0.06-0.71 0.007 

CD163 PFS 0.18 0.05-0.64 0.002 

ETS1 PFS 0.19 0.06-0.67 0.004 

FCGR2A PFS 0.20 0.06-0.69 0.004 

IL15RA PFS 0.22 0.07-0.75 0.010 

IL-32 PFS 0.19 0.06-0.67 0.004 

ITGB3 PFS 0.17 0.05-0.60 0.001 

MAPK8 PFS 0.20 0.06-0.71 0.006 

PRKCD PFS 0.19 0.05-0.66 0.004 

STAT2 PFS 0.22 0.06-0.74 0.009 

nivo, nivolumab; nivo+ipi, nivolumab plus ipilimumab; OS, overall survival; PFS, progression-

free survival  
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Table 2. Associations between cell phenotypes by compartment and by treatment arm.    

Arm Compartment Cell phenotype Outcome HR CI P 

n
iv

o
+

ip
i 

 Tumor CD3+CD8+GZB+  PFS 0.38 0.18-0.81 0.015 

Total 
CD3+CD8-FOXP3+  OS 2.33 0.99-5.51 0.042 

CD3+PD-1+ PFS 0.45 0.21-0.97 0.035 

n
iv

o
  

Stroma CD3+CD45RO+FOXP3+ PFS 0.58 0.32-1.05 0.049 

 Total 

CD3+CD45RO+  PFS 0.55 0.31-1.00 0.028 

CD3+CD45RO+FOXP3+ OS 0.52 0.28-0.96 0.026 

CD3+CD45RO+FOXP3+ PFS 0.42 0.23-0.78 <0.001 

nivo, nivolumab; nivo+ipi, nivolumab plus ipilimumab; GZB, granzyme B; Total, tumor plus 

stroma; PFS, progression-free survival. 
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FIGURE LEGENDS 

 

Figure 1. Kaplan-Meier survival curves of cellular densities and immune signatures. In the 

nivo arm (A-C), Kaplan-Meier survival curves show high cellular densities (> the median value 

used as cutoff) of (A) memory T cells (CD3+CD45RO+) in the total compartment and (B) 

CD45RO+ regulatory T cells (Tregs; CD3+CD45RO+FOXP3+) in the stroma compartment were 

associated with better progression-free survival (PFS). (C) CD45RO+ Tregs 

(CD3+CD45RO+FOXP3+) in the total compartment were associated with better OS. 

Representative multispectral images show low and high cell phenotype densities for A-C. In the 

nivo+ipi arm (D-F), the Kaplan-Meier survival curves show that high cellular densities of (D) 

PD-1+ T cells (CD3+PD-1+) in the total compartment and (E) GZB+ cytotoxic T cells 

(CD3+CD8+GZB+) in the total compartment were associated with better PFS. Conversely, (F) 

Tregs (CD3+CD8-FOXP3+) in the total compartment were associated with poor OS. 

Representative multispectral images show low and high cell phenotype densities for D-F. Cell 

scoring derived from gene expression profiling using nSolver shows higher scores for (G) 

CD45+ immune cells, (H) CD8+ T cells, and (I) neutrophils in responders compared with 

nonresponders in the nivo+ipi arm.  

 

Figure 2. Immune infiltration in exceptional responders and early progression across the 

arms. (A) The upper level of the event chart shows the exceptional responders, and the lower 

level shows the early progression/death group. The solid red circles represent deaths in the 

overall survival (OS) analysis, the open red circles indicate OS-censored patients, the solid blue 

triangles indicate progression in the progression-free survival (PFS) analysis, the open blue open 

triangles indicate PFS-censored patients, and the violet X indicates the time to the first response. 

Representative multispectral images of panels 1 (B) and 2 (C) show high levels of inflammatory 

cells in a sample from an exceptional responder patient. (D)  Box plot shows GZB+ cytotoxic T 

cells (CD3+CD8+GZB+) in patients with exceptional response compared to patients with early 

progression/death. Representative multispectral images of panels 1 (E) and 2 (F) show reduced 

immune infiltration in a progression/death patient sample. (G) The spatial organization of 

immune and malignant cell phenotypes for the two mIF panels is shown with an example each 

from exceptional responders and early progressors. The colors for the different sub-populations 

are indicated under panel phenotype legend (on the left). (H) For the above images, segregation 

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-23-0251/3410244/ccr-23-0251.pdf by guest on 20 February 2024



 32 

of different cell phenotypes based on their spatially varying probabilities is shown as a contour 

plot. The colors of different neighborhoods is same as the panel phenotypes (above). (I) For the 

above images, Euclidean distance based clusters of cells (10 or more) within 20 microns are 

identified. The clusters are represented by numbers and distinct colors. (J) The relative 

percentage composition of cell types within each cluster (above) is indicated in the heatmap. The 

corresponding cluster colors are indicated below the heatmap for reference. The color scale 

representing percentage composition (0-100), is shown on the left.  

 

Figure 3. Kaplan-Meier survival curves of nearest neighbor distance from both arms. (A) 

Upper and lower image showing proximity map overlay, where cyan dots represent malignant 

cells (CK+) and red dots represent T cells (CD3+). White lines display distances from all 

malignant cells (CK+) to neighboring T cells (CD3+). (B-E) Kaplan-Meier survival curves show 

that distances (≤ the median value used as cutoff) from (B) malignant cells (CK+) to cytotoxic T 

cells (CD3+CD8+) and (C) GZB+ cytotoxic T cells (CD3+CD8+GZB+) and (D) malignant cells 

expressing PD-L1 (CK+PD-L1) to cytotoxic T cells (CD3+CD8+) were associated with better 

progression-free survival (PFS) when combining both treatment arms. (E) Kaplan-Meier OS 

curve for distances from malignant (CK+) to GZB+ cytotoxic T cells (CD3+CD8+GZB+) in 

both arms. In the nivo+ipi arm (F-I), Kaplan-Meier survival curves show that close distances (≤ 

the median value used as cutoff) from (F) malignant cells (CK+) to cytotoxic T cells  

(CD3+CD8+) and (G) GZB+ cytotoxic T cells (CD3+CD8+GZB+), and (H) PD-L1+ malignant 

cells (CK+PD-L1+) to cytotoxic T cells (CD3+CD8+) were associated with better PFS. (I) Close 

distances from malignant cells (CK+) to GZB+ cytotoxic T cells (CD3+CD8+GZB+) was 

associated with OS.  

 

Figure 4. Olink serum soluble analyte assessment. (A) Heatmap of dynamic changes in 

protein expression. The x-axis shows the protein names, while the y-axis shows the comparisons 

between timepoints and progression. The color represents the logFC. Green represents increase 

from baseline while pink represents decrease. The size of the circle indicates the statistical 

significance expressed as –log10(FDR). (B) Boxplots and median rend lines showing the 

expression over time by cohort for CXCL9 and CXCL13. (C) Heatmap for differential protein 

expression between responders and nonresponders. The x-axis shows the protein names, while 
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the y-axis shows each timepoint. The symbol in the heatmap represents the statistical 

significance: circles for FDR < 0.05 or adjusted P values, squares for P < 0.05, and triangles for 

nonsignificant or P > 0.05. The color represents the change relative to upregulation in responders 

(blue) or nonresponders (red). (D) Boxplots corresponding to significant markers in C over time, 

stratified by treatment arm for the indicated proteins. Comparisons for individual baseline, cycle 

2, and cycle 4 timepoints are shown for P < 0.05 and FDR < 0.05 with (*) and (**), respectively. 

(E) Heatmap showing the concordance in directionally of differentially expressed proteins 

significant between exceptional responders and all responders. The direction of the protein 

changes was identical between both groups of responders, but only CXCL13 and CCL23 reached 

statistical significance (FDR, darker colors) for exceptional responders due the decreased 

numbers. Nominal significance is shown as transparent colors, indicating proteins with P < 0.05. 

(F) Volcano plot showing the proteins significantly associated with overall survival (OS) when 

jointly modeling cytokine expression over time. The proteins labeled in blue are associated with 

increased hazard ratio or decreased survival. Kaplan-Meyer OS curves for CSF-1, IL-8, CXCL13 

and MMP12 stratified based on their expression from the average expression (higher values from 

the mean as blue, lower values from the mean as red).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-23-0251/3410244/ccr-23-0251.pdf by guest on 20 February 2024



A B C 

D E F 

Non-Responders Responders Non-Responders Responders Non-Responders Responders 

G H I 

CK+/CD3+/PD-1+ 

Low High 

CK+/CD3+/ CD45RO+ 

Low High 

CK+/CD3+/ CD45RO+/FOXP3+ 

Low High Low High 

CK+/CD3+/CD8+/GZB+ 

Low High 

CK+/CD3+/FOXP3+ 

Low High 

CK+/CD3+/CD45RO+/FOXP3+ 

Figure 1 

20µm 20µm 20µm 20µm 20µm 20µm 

20µm 20µm 20µm 20µm 20µm 20µm 

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-23-0251/3410244/ccr-23-0251.pdf by guest on 20 February 2024



D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-23-0251/3410244/ccr-23-0251.pdf by guest on 20 February 2024



Figure 3 

(median distance 245.21 µm)  

(median distance 139.00 µm)  

(median distance 245.21  µm)  (median distance 147.49  µm)  

A 

F 

G H I 

E 

B C 

D 

(median distance 139.00 µm)  (median distance 245.21  µm)  

(median distance 245.21  µm)  (median distance 147.49  µm)  

50µm 

50µm 

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-23-0251/3410244/ccr-23-0251.pdf by guest on 20 February 2024



D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.C

C
R

-23-0251/3410244/ccr-23-0251.pdf by guest on 20 February 2024


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4

