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ABSTRACT

Cyclin-dependent kinases 4/6 (CDK4/6) inhibitors such as palbociclib
are approved for the treatment of metastatic estrogen receptor–positive
(ER+) breast cancer in combination with endocrine therapies and signif-
icantly improve outcomes in patients with this disease. However, given the
large number of possible pairwise drug combinations and administration
schedules, it remains unclear which clinical strategy would lead to best
survival. Here, we developed a computational, cell cycle–explicit model
to characterize the pharmacodynamic response to palbociclib-fulvestrant
combination therapy. This pharmacodynamic model was parameterized,
in a Bayesian statistical inference approach, using in vitro data from cells
with wild-type estrogen receptor (WT-ER) and cells expressing the activat-
ing missense ER mutation, Y537S, which confers resistance to fulvestrant.
We then incorporated pharmacokinetic models derived from clinical data

into our computationalmodeling platform. To systematically compare dose
administration schedules, we performed in silico clinical trials based on in-
tegrating our pharmacodynamic and pharmacokinetic models as well as
considering clinical toxicity constraints. We found that continuous dosing
of palbociclib is more effective for lowering overall tumor burden than the
standard, pulsed-dose palbociclib treatment. Importantly, our mathemat-
ical modeling and statistical analysis platform provides a rational method
for comparing treatment strategies in search of optimal combination dosing
strategies of other cell-cycle inhibitors in ER+ breast cancer.

Significance:We created a computational modeling platform to predict the
effects of fulvestrant/palbocilib treatment on WT-ER and Y537S-mutant
breast cancer cells, and found that continuous treatment schedules aremore
effective than the standard, pulsed-dose palbociclib treatment schedule.

Introduction
The advent of cyclin-dependent kinases 4/6 (CDK4/6) inhibitors (CDK4/6i)
has transformed the treatment landscape in metastatic estrogen receptor–
positive (ER+) breast cancer, and CDK4/6i in combination with endocrine
treatment is now widely used as first- and second-line treatment in metastatic
ER+ breast cancer (1). Currently, there are three approved CDK4/6i that
have shown similar improvements in progression-free survival (PFS) in the
metastatic setting: palbociclib (2), ribociclib (3), and abemaciclib (4). These
three drugs differ in their scheduling and side effect profiles; while palbociclib
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and ribociclib are administered for 21 days followed by a 7-day break to allow
for the recovery of the white blood cell count, abemaciclib is given twice daily
continuously.

The current work focused on palbociclib, which received accelerated FDA ap-
proval based on the results of the PALOMA-1/TRIO18 trial (5). The trial showed
that the addition of palbociclib to the aromatase inhibitor letrozole doubled PFS
compared with letrozole alone in advanced ER+ breast cancer. Subsequently,
the PALOMA-2 (2) and PALOMA-3 (6) phase III clinical trials showed a sig-
nificant increase in PFS with the addition of palbociclib to either letrozole or
fulvestrant in first- or second-line treatment of advanced ER+ breast cancer,
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respectively. The most common side effect of palbociclib is neutropenia.
Although neutropenia in the setting of palbociclib is usually transient andman-
ageable, it can require dose reductions, treatment interruptions or treatment
delays, which could diminish the benefit of this drug.

Furthermore, intrinsic resistance to palbociclib is observed in approximately
15% of patients with metastatic ER+ breast cancer and ultimately nearly all pa-
tients will develop resistance (6). Several mechanisms of resistance to CDK4/6
inhibitors have been identified that can be categorized as (i) alterations in the
CDK4/6-cyclin D1-pRb axis, such as increased expression of CDK6 and Rb1
mutations; (ii) upstream feedback adaptive mechanisms including activation
of the PI3K-AKT and RAS-MAPK signaling pathways; and (iii) bypass down-
stream mechanisms including upregulation of cyclin E1 and CDK2 (reviewed
in refs. 7–9). In addition, initial results from the PADA-1 trial showed that pa-
tients without clearance of an ESR ligand-binding domain (LBD)-activating
mutation had double the odds of disease progression on palbociclib and an
aromatase inhibitor (10, 11). This type of mutation confers constitutive activity,
resistance to estrogen deprivation and relative resistance to fulvestrant (12). In
addition, theY537SESR-activatingmutationwas found to be acquired after the
development of resistance to fulvestrant in combination with palbociclib (13).
These findings support the notion that sensitivity to endocrine treatment and
the synergy between endocrine treatment and palbociclib are paramount to the
benefit from this therapeutic combination. These clinical limitations raise the
question ofwhether different treatment scheduling can improve tolerability and
overcome intrinsic resistance or delay the development of acquired resistance
to endocrine treatments in combination with palbociclib.

The question of how to schedule palbociclib in combination with endocrine
treatment most effectively remains unresolved. This question is of particular
relevance, because previous studies have shown that altering therapy admin-
istration dosage and schedules can substantially improve treatment outcomes
(14, 15). In ref. 14, it was shown that an alternative schedule with lower doses of
palbociclib and endocrine therapy administered more frequently reduced drug
toxicities and still maintained plasma drug concentrations above the threshold
required for efficacy. A phase III trial (15) compared the effects of administer-
ing 250 and 500 mg fulvestrant on outcomes in postmenopausal women with
ER+ breast cancer and found that the higher dose led to an increase in PFS
without increasing toxicity. Because of ethical and feasibility concerns, the en-
tire space of possible combination dose administration schedules cannot be
tested in clinical trials. Mathematical modeling in conjunction with careful pa-
rameterization, however, can be used to explore the effects of other possible
combination treatment schedules and to predict the most effective schedule for
reducing long-term tumor burden. These predictions can then be validated in
preclinical trials before being tested in the clinic. We here sought to investi-
gate whether there are alternative palbociclib dosing strategies that are more
effective compared with the current standard of care while adhering to clinical
constraints of feasible treatment schedules.

To this end, we interrogated different dosing strategies in ER+ breast cancer
cells expressing either wild-type estrogen receptor (WT-ER) or doxycycline
(DOX)-induced expression of the ER Y537S LBD-activating mutation, which
is one of the most prevalent and potent ESR-activating mutations (16). We
adopted amultistagemodel of cell-cycle progression (17–20), combinedwith an
effective drug dosemodel describing the extent of drug synergism (21) tomodel
the response to fulvestrant plus palbociclib combination treatment for −DOX
(WT-ER) cells and +DOX (expressing Y537S) cells, respectively. On the basis

of data from in vitro drug synergy and cell-cycle assays, we then used Bayesian
inference to estimate the model parameters. We sampled the model parame-
ters from their posterior distributions to simulate the pharmacodynamics of
palbociclib and fulvestrant, specifically their effect on G1 arrest, and further
introduced a new drug-response metric defined in terms of the IC50 on the
cell-cycle transition rate (TR50). Finally, we integrated the parameterized phar-
macodynamic model with a pharmacokinetic model derived from clinical data
to predict the optimal dosing schedules for reducing long-term tumor burden
(Fig. 1).

Materials and Methods
Quick Guide to Equations and Assumptions
An Effective Drug Dose Model

We used a previously described drug dose–response model (21) to describe
the interaction between fulvestrant and palbociclib. This model is an exten-
sion of the additive Bliss model (22, 23), which describes the combination drug
response as the product of the single drug response curves and uses the ef-
fective doses that differ from the actual doses due to interactions with other
drugs in the combination. In general, the effective concentration of each drug is
given by

dF,e f f = dF

(
1 + aFP

dP,e f f /CP

1 + dP,e f f /CP

)
, (1)

dP,e f f = dP

(
1 + aPF

dF,e f f /CF

1 + dF,e f f /CF

)
, (2)

where dF and dP are the actual concentrations of fulvestrant and palbociclib,
respectively;CF andCP are the doses of fulvestrant and palbociclib, respectively,
causing 50% of the maximum drug response, where the latter is the theoretical
maximum as the drug concentration approaches infinity and the drug response
refers to the G1-to-S transition rate defined in Eqs. (3) and (4); and aFP and aPF
are the interaction parameters between fulvestrant and palbociclib. Note that
aFP , aPF > 0 when the two drugs are antagonistic, aFP , aPF < 0 when the two
drugs are synergistic, and aFP , aPF = 0 when there is no interaction. To reduce
the complexity of our model, we set the interaction parameter aPF in Eq. (2) to
zero. This simplification was suggested in ref. 21, which showed that this model
reduction by setting one of the two interaction parameters to zero gives very
little loss of accuracy.

We then defined the G1-to-S transition rate, λ∗
α(dF , dP ), as

λ∗
α (dF , dP ) = λ(max)

α +
(
λα − λ(max)

α

)
rF

(
dF,e f f

)
rP

(
dP,e f f

)
, (3)

where λ(max) α is the G1-to-S transition rate as the amount of drug approaches
infinity, and rF (dF,e f f ) and rP(dP,e f f ) are the effective responses of fulvestrant
and palbociclib, respectively, which are given by

r j
(
d j,e f f

) = 1

1 +
( d j,e f f

c j

)b j , j ∈ {F, P} , (4)

This choice is based on a previous study (24) demonstrating that the
dose–response curves are well characterized by Hill curves.

A Cell Cycle–explicit Model

On the basis of the setup of the multistage cell-cycle model (Supplementary
Appendix S1) and the G1-to-S transition rate defined in the effective drug dose
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FIGURE 1 General framework of the combined experimental, mechanistic, and statistical modeling approach. A, Model of fulvestrant and palbociclib
pharmacodynamics: we parameterized our mechanistic model using data from in vitro drug synergy and cell-cycle analysis assays in MCF7 −DOX and
+DOX cells, respectively). B, Model of fulvestrant and palbociclib pharmacokinetics: we used the pharmacokinetic model derived from clinical data to
describe the plasma concentration of fulvestrant and palbociclib in the blood stream. C, Model of fulvestrant and palbociclib treatment schedule
outcomes: by the integration of our pharmacodynamic and pharmacokinetic modeling of fulvestrant and palbociclib treatment responses, we
simulated in silico patient responses of different combination treatment schedules in patients with HER2+ breast cancer.

model, the parameters and the phases of the chain of cell-cycle progression are
specified as

S1
λα→ · · · λα→ Sm︸ ︷︷ ︸

G1

λ∗
α→ Sm+1

λβ→ · · · λβ→ S2m︸ ︷︷ ︸
S

λβ→ S2m+1
λγ→ · · · λγ→ S3m︸ ︷︷ ︸
G2/M

λγ→ 2S1. (5)

Given this chain of cell-cycle progression, our mathematical model is then
specified as

dxk (t )
dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 λγX3m (t ) − λαX1 (t ) , for k = 1,
λαXk−1 (t ) − λαXk (t ) , for k = 2, · · · ,m − 1,
λαXm−1 (t ) − λ∗

α (dF , dP )Xm (t ) , for k = m,

λ∗
α (dF , dP )Xm (t ) − λβXm+1 (t ) , for k = m + 1,

λβXk−1 (t ) − λβXk (t ) , for k = m + 2, · · · , 2m,

λβX2m (t ) − λγX2m+1 (t ) , for k = 2m + 1,
λγXk−1 (t ) − λγXk (t ) , for k = 2m + 2, · · · , 3m,

(6)

and according to the summation formulas (Supplementary Appendix S1)

xα (t ) =
nα∑
k=1

xk (t ) , xβ (t ) =
nα+nβ∑
k=nα+1

xk (t ) , xγ (t ) =
nα+nβ+nγ∑
k=nα+nβ+1

xk (t ) ,

(7)

where xα(t ) represents the number of cells in phase G0–G1 of the cell cycle,
xβ(t ) represents the number of cells in S phase, and xγ(t ) represents the number
of cells in G2–M at time t, the system of differential Eq. (6) can be aggregated
into three equations,

dxα (t )
dt = 2λγX3m (t ) − λ∗

α (dF , dP )Xm (t ) ,
dxβ (t )
dt = λ∗

α (dF , dP )Xm (t ) − λβX2m (t ) ,
dxγ (t )
dt = λβX2m (t ) − λγX3m (t ) ,

(8)

to model the cell dynamics in G0–G1, S, and G2–M phases, respectively. See
Supplementary Fig. S1 for an illustration of our model [Eqs. (6)–(8)].

Cell Culture
MCF7 cells (ATCCHTB-22) with DOX (catalog no. S631311)-inducible expres-
sion of the Y537S ER mutation were grown in DMEM supplemented with 10%
FBS and 1% penicillin-streptomycin-glutamine, hereafter referred to as full me-
dia conditions. MCF7 cells were authenticated by short tandem repeat profiling
(Bio-Synthesis) and regularly tested for Mycoplasma contamination using the
MycoAlertMycoplasmaDetection Kit (Lonza) according to themanufacturer’s
instructions. The generation of the DOX-induced Y537S ER-mutant cells was
previously described and these cells have been extensively characterized (16).
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TABLE 1 In silico clinical trial schedules of palbociclib

Schedule name Schedule description

Current standard schedule 3 weeks on, 1 week off of 125 mg daily
Daily 100 mg Continuous daily dosing of 100 mg
Daily 75 mg Continuous daily dosing of 75 mg
BID 50 mg Continuous daily dosing of 50 mg administered twice per day (100 mg in total)
BID 50 mg in the morning, 25 mg at night Continuous daily dosing of 50 mg in the morning, 25 mg at night (75 mg in total)

NOTE: All palbociclib schedules are in combination with the current standard administration schedule for fulvestrant (500 mg intramuscular on days 1, 15, and
29, and then monthly thereafter).

Drug Synergy Analysis
MCF7 cells were grown in full media in the presence or absence of DOX for
3 days. On day−1, cells were plated in 96-well plates (Greiner 655090) in tripli-
cates, with 2,000 cells/well for−DOX cells and 3,000 cells/well for+DOX cells.
The numbers of cells plated per cell line was determined on the basis of the
number of cells that allowed sufficient growth and avoided confluency on day 5
in vehicle conditions. On day 0, cells plated in the day 0 plate were counted. All
other plates were treated on day 0 only. Treatment included vehicle and 2-fold
serial dilutions for four doses of palbociclib (catalog no. S1579) at concentra-
tions of 12.5, 25, 50, and 100 nmol/L, as well as fulvestrant (catalog no. S1191) at
concentrations of 0.65, 1.3, 2.6, and 5.2 nmol/L, in a matrix format to include
25 different dose combinations. Cells were counted on days 1, 2, 3, 4, and 5.
Viable cells were stained with Hoechst (catalog no. H3570) and counted using
the Celigo image cytometer.

Cell-cycle Analysis
MCF7 cells were grown in full media in the presence or absence of DOX for
3 days. On day 3, 500 cells/well were plated in 96-well plates (Greiner 655090)
in triplicates for each condition. On day 1, cells were serum-starved for 24 hours
for synchronization. The cell-cycle phase distribution was analyzed on day 0 in
the day 0 plates, and all other plates were treated. Treatments were fulvestrant
(F) at 1.25 nmol/L (F1), 2.5 nmol/L (F2), 5 nmol/L (F3), and 10 nmol/L (F4); pal-
bociclib (P) at 12.5 nmol/L (P1), 25 nmol/L (P2), 50 nmol/L (P3), and 100nmol/L
(P4); and their combination (F1+P1, F2+P2, F3+P3, F4+P4). The cell-cycle
phase distribution was analyzed on days 1, 2, 3, and 4. Cell-cycle analysis was
done using the Click-iT EdU HCS Assay kit (Invitrogen, catalog no. C10351) as
per manufacturer’s instruction, with EdU staining for 4 hours at 37°C followed
by scanning and analysis with the Celigo cytometer using the Target 1 (EdU)+
Mask (DAPI) setting.

Bayesian Estimation of Model Parameters
Data from in vitro drug synergy and cell-cycle assays were used to estimate
all cell-cycle transition rates including the effective transition rate from G1 to
S, λ∗

α(dF , dP ) given by Eq. (3) under varying drug concentrations. Bayesian
inference was used to estimate model parameters and the number of tumor
cells on day 0 using the Stan programming language and CmdStan R package
(25). Markov Chain Monte Carlo (MCMC) sampling was performed using the
no-U-turn sampler (NUTS; ref. 26). Normal priors were used for all model pa-
rameters, while Half-Cauchy priors were used for the variance parameters as
proposed in ref. 27. Details of choosing priors, generating posterior samples
of the model parameters and the cell counts on day 0, and evaluating model
inference are provided in Supplementary Appendix S2.

Simulating In Silico Clinical Trials
We chose several treatment administration schedules (Table 1) as alternative
continuous dosing schedules within current toxicity constraints based on ev-
idence from recent phase II and III randomized trials (28, 29). To predict the
outcomes of administering these treatment schedules, we simulated a cohort
of 1,500 in silico patients according to the following two steps. In step one, we
modeled the pharmacokinetics of in silico patients as informed by clinical trial
data (30, 31): palbociclib pharmacokinetics were characterized by linear absorp-
tion kinetics, with time tmax to reach the maximum plasma concentration Cmax

and an exponential decay with half-life T1/2 (30), while fulvestrant pharma-
cokinetics were described using a two-compartment kinetic model (31). The
pharmacokinetic parameters of each in silico patient were sampled from log-
normal distributions with the mean values and the variances determined from
the clinical trial data (30, 31). In step two, we sampled all parameters in themul-
tistage cell-cycle model (Supplementary Table S1), including the day 0 values of
tumor cell counts [Supplementary Appendix S2: Eqs. (4)–(7)], from their pos-
terior distributions derived as described in the section Bayesian Estimation of
Model Parameters. By generating this cohort of 1,500 in silico patients with the
parameters sampled as described above, for each of the treatment schedules
listed in Table 1, we simulated the drug concentrations over time derived from
the pharmacokinetic model, and applied the simulated drug concentrations to
Eqs. (6)–(8) of the cell-cyclemodel to predict the number of tumor cells for each
patient. Treatment response dynamics of each in silico patient was simulated for
a period of 100 days. The duration of this period was chosen such that the trend
of the treatment response, in terms of the predicted number of tumor cells, was
observable (Table 1) and lasted for more than one week (see Results section).
Finally, the predicted number of tumor cells at day 100 was used to rank the
proposed treatment schedules according to their performance (Table 1).

Data Availability
All data are available from the authors upon request.

Code Availability
All code used to process data and generate figures is available on a publicGithub
repository at https://github.com/Michorlab/Optimal_Schedule_ER-positive.

Results
Characterization of the In Vitro Response to
Combination Treatment
To characterize the in vitro response to fulvestrant-palbociclib combination
treatment, we performed 5-day drug synergy experiments for four doses of
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TABLE 2 IC50s versus G1–S TR50 of palbociclib and fulvestrant

Palbociclib (IC50) Palbociclib (G1–S TR50) Fulvestrant (IC50) Fulvestrant (G1–S TR50)

−DOX 58 nmol/L 7.7 nmol/L 2 ∗ 10−1 nmol/L 1.47 ∗ 10−5 nmol/L
+DOX 41 nmol/L 18 nmol/L 5 nmol/L 1.49 nmol/L

NOTE: IC50s represent the concentrations at which the total cell growth counts are half the control at day 5 (Supplementary Fig. S2) and G1–S TR50s represent the
concentrations at which the mean of transition rates from G1 to S are half the control.

palbociclib (12.5, 25, 50, and 100 nmol/L) and fulvestrant (0.65, 1.3, 2.6, and
5.2 nmol/L) in a matrix format to include 25 different dose combinations
(Supplementary Fig. S2) and 4-day cell-cycle experiments for fulvestrant at
1.25 nmol/L (F1), 2.5 nmol/L (F2), 5 nmol/L (F3), and 10 nmol/L (F4); palbo-
ciclib at 12.5 nmol/L (P1), 25 nmol/L (P2), 50 nmol/L (P3), and 100 nmol/L
(P4); and their combination (F1+P1, F2+P2, F3+P3, F4+P4; Supplementary
Fig. S3) using MCF7 cells containing a Dox-inducible Y537S ESR mutation,
which confers relative resistance to fulvestrant (16). The choice of concentra-
tionswasmade to guarantee that the range covers the IC50s for both−DOXand
+DOX cells, defined by the cell countmeasured at day 5 in the drug synergy ex-
periments (Table 2). We observed that cell growth was inhibited when the dose
of either palbociclib or fulvestrant increased for −DOX cells (WT-ER; Sup-
plementary Fig. S2A). On the other hand, we observed a marginal inhibitory
effect of low-dose fulvestrant on the+DOX (Y537S-mutant) cells (Supplemen-
tary Fig. S2B). These observations are supported by the growth rates (GR)
determined from the in vitro data (Supplementary Table S2). Furthermore, our
data showed that the cells accumulating in G0–G1 led the growth to plateau
in the overall population in a dose-dependent manner during treatment with
palbociclib and fulvestrant (Supplementary Fig. S3). These observations were
expected because fulvestrant and palbociclib prevent progression through the
G1 to S checkpoint (32–34). In addition, at the lowest concentrations of the
fulvestrant-palbociclib combination in the 4-day cell-cycle experiments (ful-
vestrant at 1.25 nmol/L in combination with palbociclib at a concentration of
12.5 nmol/L), we observed a lower level of G0–G1 accumulation with the induc-
tion of the Y537Smutation (Supplementary Fig. S3), consistent with the relative
resistance to fulvestrant engendered by this mutation as observed in preclini-
cal and clinical studies (11, 12, 35, 36). As the concentration of the combination
increased to a higher level (fulvestrant 5 nmol/L + palbociclib 50 nmol/L), we
observed that the level of G0–G1 accumulation of Y537S-mutant cells became
similar to the level of WT-ER cells (Supplementary Fig. S3), suggesting that the
higher concentration in the combination treatment may overcome resistance
to fulvestrant.

A Mathematical Model of Combination
Treatment Response
On the basis of our current understanding of the mechanism of action of en-
docrine treatment and CDK4/6 inhibitors (1, 2, 32–34) and the data obtained
from the cell culture experiments described above, we designed a mechanis-
tic model that explicitly incorporates cell-cycle status to describe the response
to fulvestrant plus palbociclib combination therapy. The model is based on a
multistage process of cell-cycle progression, which consists of a set of linear or-
dinary differential equations (ODEs) [Eq. (6)] that models the number of cells
in every phase of the cell cycle. By summing over the subphases of each cell-
cycle phase, we obtained the three equations shown in Eq. (8) to describe cell
dynamics in the G0–G1, S, G2–M phases of the cell cycle, respectively. We did
not include carrying capacities in the model based on the observation in our

control experiments (zero doses for both fulvestrant and palbociclib in Supple-
mentary Fig. S2) showing that the cells treated with or without DOX displayed
no obvious contact inhibition during cell growth within the 5-day duration of
the experiment, an observation consistent with the evidence of loss of con-
tact inhibition in cancer cells (37, 38). To justify this assumption, we compared
the results of our model with those of a logistic growth model (39) to validate
that the effects of carrying capacities are negligible for the parameter regimes
estimated on the basis of our data (Supplementary Appendix S3).

As discussed in Materials andMethods, the model parameters of the transition
rates are given by the chain of cell-cycle progression Eq. (5). The transition rates
defined in the chain, Eq. (5), λα, λβ, and λγ are held constant and λ∗

α are mod-
eled as a function of the drug concentrations of fulvestrant and palbociclib since
the rateλ∗

α for the transition fromG1 to S is set to be the only parameter affected
by treatment, an assumption that is supported by several biological studies
(32–34). For allmodel parameters,λα,λβ,λγ, and the set of parameters in func-
tion λ∗

α given by Eq. (3), we implemented a NUTS MCMC algorithm to infer
the parameters that best fit cell growth and treatment response dynamics. The
model was estimated using both in vitro drug synergy datasets from the 5-day
drug synergy experiments (Supplementary Fig. S2) and the in vitro cell-cycle
data from 4-day cell-cycle phase experiments (Supplementary Fig. S3).

Different cell lines may have a different number of subphases, m, in the multi-
stage model (18–20). Therefore, we compared models with different values of
m using the leave-one-out information criterion (LOOIC), using the loo com-
pare function in R (40), to infer the most probable number of subphases of
each phase for −DOX and +DOX cells, respectively. For model selection of
the values ofm, we chose integers fromm = 1 to 10 as well asm = 20; the latter
value was utilized to validate that 1 to 10 is a proper range. Among this set of
values form, we obtained a global maximum value for the model comparison;
this value was not on the boundaries (1 and 10), and the value m = 20 led to
significantly worse results as evaluated by LOOIC as compared with m = 10
(Supplementary Fig. S4). Using this approach, we estimated that the best value
of m for −DOX cells was m = 8 and for +DOX cells m = 2 (Supplementary
Fig. S4), thus suggesting that the Dox-inducible ESR mutation may lead to a
change in the number of the sequence of memoryless steps of the underlying
biochemical reactions of cell-cycle progression. The correspondence between
the memoryless steps and the number of subphases has been investigated in
refs. 17–20. These studies showed that the cell-cycle progression defined by
the G0–G1, S, and G2–M phases is not memoryless. However, by subdividing
each phase into m rate-limiting steps (with the integer m varying among cell
lines), the cell-cycle progression modeled by the progression on the subphases
becomes aMarkov process, in which each step is memoryless. For a large num-
ber of cells, the mean number of cells at each subphase follows the system of
3m-dimensional ODEs [Eq. (6)]. Therefore, our result of the difference in m
between −DOX and +DOX cells implies that the ESR mutation may lead to
an underlying change in the rate-limiting steps of the cell cycle.
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FIGURE 2 A, B, Posterior prediction of the total cell count. Each panel shows the posterior predicted total number of live cells over 5 days for a
specific combination of palbociclib and fulvestrant for −DOX (A) and +DOX (B) cells. The line represents the median posterior predicted live cell count
value over 5 days and the gray shaded area corresponds to the 95% credible interval of the posterior predictive values. The datapoints represent the
observed cell counts from the drug synergy experiments used to train the model. The concentration of palbociclib increases across the columns and is
denoted at the top of each column; the concentration of fulvestrant increases down the rows and is denoted to the right of each row. The unit of drug
concentrations is nmol/L. C, D, The posterior predictive number of cells in each phase of the cell cycle for −DOX (C) and +DOX (D) cells treated with
fulvestrant and palbociclib in combination. Each panel corresponds to a specific dose of fulvestrant and palbociclib. The line represents the median
posterior predictive value and the shaded area corresponds to the 95% credible interval of the posterior predictive values. The datapoints represent
the observed cell phase counts from the cell-cycle analysis experiments used to train the model. The concentrations of fulvestrant and palbociclib
increase across the columns and are denoted at the top of each column. Red, blue, and green represent the G0–G1, S, and G2–M phases, respectively.
See Supplementary Fig. S5 and S6 for more sets of drug concentrations.

We then used the posterior parameter values to generate posterior predictive
samples of the cell count over 5 days of combination treatment. We found that
the model accurately predicted the total cell count for both−DOX and+DOX
cells with small 95% credible intervals of the posterior predictions, spanning
1/2 to 1/3 orders of magnitude of the medians (Fig. 2A and B for a representa-

tive subset and Supplementary Fig. S5 for details). In contrast, the 95% credible
intervals of the posterior predictions of the cell-cycle phase analysis were large,
often spanning 2 or 3 orders of magnitude of the medians, suggesting that the
cell-cycle phase estimates had a larger degree of variability (Fig. 2C and D for a
representative subset and Supplementary Fig. S6 for details). This uncertainty
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Modeling Identifies Palbociclib-fulvestrant Schedules

in the cell-cycle data likely arises due to the EdU assay’s limitation to defini-
tively differentiate between cells that are in the S versus G2–M phases of the
cell cycle. As a result, about 10% of cells were between phases and were not as-
signed to any phase. Two approaches to address this limitation, one relating to
the experimental design and the other based on modeling, are provided in the
discussion section.

Pharmacodynamics of Palbociclib and Fulvestrant
The IC50 is a common metric to quantify drug sensitivity and resistance (41).
The standard approach to determining this conventional metric is based on
cell counts obtained at the end of the experiment. However, during the entire
time-course assays, cells may encounter various numbers of divisions due to
variations in the control variables of the experiment, independently of the drug
effects, and therefore IC50 might provide an incomplete picture of the drug re-
sponse. To overcome this issue, other metrics such as the normalized growth
rate (GR) inhibition (42) have been suggested. Here, in addition to determin-
ing IC50 and GR50, we were able to additionally infer the transition rates of the
cell cycle as a function of the concentrations of palbociclib and fulvestrant. Esti-
mating these rates based on the in vitro cell-cycle data enabled us to estimate the
pharmacodynamics of palbociclib/fulvestrant; of particular importancewas the
drugs’ effect on controlling the transition from G1 to S. On the basis of recent
studies (32–34), the drug inhibition of the G1–S transition leads to a reduction
in the cell number and the GR. Therefore, for drugs such as palbociclib and ful-
vestrant that control the transition from G1 to S, the metric of a 50% reduction
of the G1–S transition rate should be considered as amore direct measure of the
drug effect than either IC50 (measuring cell number) or GR50 (measuring cell
GR). To distinguish the 50% G1–S transition rate from the IC50 and GR50 met-
rics, we defined the term “G1–S TR50”, where TR represents the transition rate.

We then investigated the pharmacodynamics of palbociclib/fulvestrant for
−DOX/+DOX cells and simulated cell growth with respect to different com-
bination treatment strategies. First, we observed that the Hill functions, which
represent the ratio of the G1-to-S transition rates of cells during treatment and
the transition rate of cells in the control condition, change much more sig-
nificantly between −DOX and +DOX cells in response to fulvestrant than in
response to palbociclib (Fig. 3A-D). This result is consistent with the evidence
that the ESR mutation, in our experimental system induced by DOX, causes
endocrine treatment–resistant breast cancer (16). Second, given data from in
vitro drug synergy and cell-cycle assays and the Bayesian estimations of model
parameters (Materials and Methods), we estimated the G1–S TR50s and the in-
teraction parameter of palbociclib and fulvestrant (aFP defined in the effect
drug dose model in the section of equations and assumptions). By drawing
the samples of the posterior distributions derived from the Bayesian estima-
tions, we plotted the densities of G1–S TR50s (Supplementary Fig. S7A–S7D)
and the interaction parameter of palbociclib and fulvestrant (Supplementary
Fig. S7E and S7F) for−DOX and+DOX cells, respectively. Negative values for
the interaction parameter indicate synergism between palbociclib and fulves-
trant while positive values show antagonism. From the posterior distributions,
we inferred that the mean values of the interaction parameters were−0.113 and
−0.1 for−DOXand+DOXcells, respectively, and over 87%of the sampleswere
negative, suggesting that these twodrugs are predominantly synergistic in prob-
ability based on the Bayesian estimations. Third, we provided surface (Fig. 3E
and F) and contour plots (Supplementary Fig. S8) to describe the response sur-
faces of palbociclib and fulvestrant combinations. We found that −DOX cells
are extremely sensitive to fulvestrant compared with palbociclib, as demon-

strated by the asymmetric surface plot, but +DOX cells have the same level of
response to palbociclib and fulvestrant, as indicated by the symmetric surface
plot. Finally, we compared the means of G1–S TR50s and the IC50s determined
by the concentrations at which the cell count is half that of the control con-
dition at day 5 (Table 2): by computing the ratio of the value of fulvestrant to
the value of palbociclib in −DOX cells (a smaller ratio corresponds to a lower
dose of fulvestrant to achieve the same effect of a unit dose of palbocilib), we
found that the G1–S TR50 response metric is more sensitive compared with the
conventional metric IC50; the G1–S TR50 has a ratio of 1.47 × 10−5/7.7 and the
IC50 has a ratio 2 × 10−1/58. Moreover, by computing the ratio of the value of
fulvestrant in +DOX cells to the value of fulvestrant in −DOX cells, we found
that the ESR mutation leads to about 104 to 105 in this ratio defined by G1–S
TR50, but only 100 to 101 in this ratio defined by IC50, that is, the G1–S TR50

response metric provides a more significant change before and after acquiring
the resistance to fulvestrant.

Determining an Optimal Treatment Schedule for
Clinical Testing
We then set out to determine optimum treatment schedules for clinical use. To
this end, we incorporated pharmacokinetic models into ourmodeling platform
to predict the dynamics of drug response in 1,500 in silico patients (see Mate-
rials and Methods). We tested the schedules listed in Table 1; these schedules
were chosen because they represent alternative continuous dosing schedules
that are within current toxicity constraints suggested by the pooled analysis of
the frequency of hematologic adverse events in the PALOMAclinical trials (29).
For each of the 1,500 patients, we simulated 100-day treatment schedules and
compared the predicted number of tumor cells of each schedule with the cur-
rent standard palbociclib schedule (Fig. 4). The current standard palbociclib
schedule is 125 mg per day for 3 weeks, followed by a 1-week treatment holiday,
and all palbociclib schedules were in combinationwith the current standard-of-
care fulvestrant schedule (500 mg monthly, with a 500 mg loading dose at day
14). Our in silico simulations involve administering palbociclib in conjunction
with the current standard schedule for fulvestrant, which includes intramuscu-
lar injections of 500 mg on days 1, 15, and 29, followed by monthly injections
thereafter. Our pharmacokinetic model, based on previously published data
(31), demonstrates that there is an initial increase in plasma concentration of
fulvestrant following intramuscular injection, which is subsequently followed
by a decrease until the next injection (Supplementary Fig. S9A). This variability
in plasma concentration is in agreement with the findings of two phase III trials
(31), indicating that the concentration is not constant over time.

Our in silico clinical trial results suggest that continuous dosing of palbociclib is
more effective in reducing the predicted overall tumor cell count than the stan-
dard, pulsed-dose palbociclib (Fig. 4A and B: p < 1e − 13 for each continuous
dosing to the standard dosing at day 100, Wilcoxon test), the waterfall charts
in descending order of the cell numbers at day 100 (Fig. 4C and D), and the
trend of cell growth trajectories (Fig. 4E: growth pattern of −DOX cells after
the first cycle, 28 days, of the treatment schedules; Fig. 4F: growth pattern of
+DOX cells after the second cycle, 56 days, of the treatment schedules). On the
basis of the clinical trial (30), our pharmacokinetic model indicated a decline
in the plasma concentration of palbociclib when treatment was stopped every
3 weeks (Supplementary Fig. S9B). Our in silico predictions, combined with
the pharmacokinetic model results, suggested that this decrease in palbociclib
concentration upon treatment discontinuation was associated with a rebound
to exponential growth. In addition, we found that one dose of palbociclib
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FIGURE 3 Pharmacodynamics of palbociclib and fulvestrant. A–D, In each panel, the y-axis represents the ratio of the G1-to-S transition rate treated
by palbociclib/fulvestrant to the G1-to-S transition rate in control (zero drug concentration) and the x-axis represents drug concentrations in the
unit of nmol/L. The gray shaded area corresponds to the 95% credible interval of the posterior predictive values. A, Fulvestrant only in −DOX cells.
B, Palbociclib only in −DOX cells. C, Fulvestrant only in +DOX cells. D, Palbociclib only in +DOX cells. E and F are the surface plots for G1–S TR50

(z-axis) with respect to the combinations of palbociclib (x-axis) and fulvestrant (y-axis). E, For −DOX cells: because the response to fulvestrant is
extremely sensitive, the unit is rescaled to 1e−6 nmol/L; palbocilib is in the unit of nmol/L. F, For +DOX cells: the units of palbociclib and fulvestrant are
both in nmol/L.
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Modeling Identifies Palbociclib-fulvestrant Schedules

FIGURE 4 In silico trial predictions of multiple palbociclib treatment administration schedules in combination with fulvestrant. For −DOX cells (A)
and for +DOX cells (B), The panels show the box plots for the number of cells at day 100. The p-values were computed using the Wilcoxon test. In each
panel, we only show the largest two p-values. The p-values not shown in the panels, for the rest of pairs of treatment schedules, are all smaller than
1e − 15 in A and 1e − 13 in B. For −DOX cells (C) and for +DOX cells (D), The panels show the waterfall charts for 150 random samples from the group
of 1,500 simulations in descending order of cell number at day 100. For −DOX cells (E) and for +DOX cells (F), The panels show the predictions of
in silico cell growth trajectories by taking the ratio of each schedule to the standard schedule (daily, 125 mg, 3 weeks on, 1 week off). The shaded area
corresponds to the 95% credible interval of the posterior predictive values.

100 mg per day is predicted to be more effective in reducing the overall tumor
cell count than two doses of palbociclib 50mg per day (Fig. 4A-D: the cell count
at day 100 and Fig. 4E and F: the patterns of growth trajectories). Corresponding
to this finding, we observed that the peak plasma concentration of palbociclib
is larger when 100 mg of palbociclib is administered once per day in compari-
sonwith when 50mg of palbociclib is administered twice a day (Supplementary
Fig. S9B). In addition, because the lower bounds of the plasma concentrations

of palbociclib given by the 100 mg daily schedule and the BID 50 mg (50 mg
twice a day) schedule are similar, the higher peak plasma concentration of pal-
bociclib leads to a higher mean plasma concentration (the ratio of 100 mg daily
to BID 50 mg is 1.12). Interestingly, we found that a daily dose of 75 mg is pre-
dicted to be less effective in reducing the predicted number of tumor cells than
splitting the dose into 50 mg in the morning and 25 mg at night (Fig. 4A-D: the
cell count at day 100 and Fig. 4E and F: the patterns of growth trajectories). In
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distinction to the case of 100 mg daily versus 50 mg twice a day, we did not ob-
serve a difference of the peak plasma concentrations of palbociclib between the
daily dose of 75 mg and splitting the dose into 50 mg in the morning and 25 mg
at night (Supplementary Fig. S9); on the other hand, we observed that the lower
bound of the plasma concentration of palbociclib was higher when splitting the
dose into 50mg in the morning and 25mg at night (BID 50mg/25 mg) in com-
parison with 75mg of palbociclib administered once per day, that is, the plasma
concentration of palbociclib does not drop as much in the BID 50 mg/25 mg
schedule compared with the 75 mg schedule. Taken together, the mean plasma
concentration of palbociclib is higher in the BID 50 mg/25 mg schedule (the
ratio of BID 50 mg/25 mg to 75 mg daily is 1.07). On the basis of the results of
daily dose versus BID dose in both 100 mg and 75 mg per day schedules, we
found that maintaining a higher steady state mean plasma concentration, con-
fined by the toxicity constraint, is associated with a higher efficacy in reducing
the number of tumor cells.

We further investigated the proposed schedules (Table 1), particularly the 100
mg daily and BID 50 mg/25 mg per day schedules, to identify the optimal
approach when considering adverse events. A clinical trial (43) showed that
continuous dosing of palbociclib 100 mg led to a large rate of grade 3 and 4
neutropenia requiring dose reductions or dose delays in 70% of patients, and
another clinical trial (29) found that continuous daily dosing of 100mgof palbo-
ciclib led to a high rate of adverse events such that 33.8% of the patients required
a palbociclib dose reduction from 100 to 75 mg. It is likely that the 75 mg per
day schedules of palbociclib will have a lower rate of adverse events. We thus
compared the treatment efficiency of the daily 100mg and the BID 50mg/25mg
schedules, and found that the daily 100 mg schedule is more effective in reduc-
ing the predicted tumor cell count at day 100 for either−DOXor+DOXof cells
(Fig. 4A andB: p< 1e− 13,Wilcoxon test). In particular for+DOXcells, almost
all (>95%) of the in silico patients with daily 100 mg dosing had less than one
fourth of the cells at 100 day relative to the standard schedule (Fig. 4F). In con-
trast, under half (44.2%) of the in silico patients with BID 50mg/25mg achieved
this fraction (Fig. 4F). However, the BID 50 mg/25 mg schedule is still more ef-
fective than the standard treatment schedule for either −DOX or +DOX cells
(Fig. 4A and B: p < 1e − 13, Wilcoxon test). Taken together, our results suggest
the following schedules to be best: (i) the BID 50 mg/25 mg of palbociclib for
patients with decreased tolerability or (ii) daily 100 mg of palbociclib for pa-
tients with a large percentage of cells harboring a Y537S ER mutation (+DOX
cells) and who experience manageable adverse events.

We then sought to investigate situations in which −DOX/+DOX cells acquire
different levels of palbociclib resistance since clinical and preclinical trials have
suggested that several specific molecular characteristics (e.g., RB loss and in-
trinsic subtypes) may lead to palbociclib resistance (13, 44, 45) and resistance
to CDK4/6 inhibitors is a significant clinical challenge (7–9). We applied our
mathematical model to the in vitro data of palbociclib-resistant MCF7 cells
whose resistance was confirmed by a growth study (Supplementary Fig. S10).
The drug response curves estimated from the data revealed that those cells are
resistant to the effect of palbociclib with regard to its regulation of the G1–
S transition rate (Fig. 5A and B). We then combined the pharmacodynamic
model of this palbociclib-resistant cell line with the palbociclib pharmacoki-
netic model to perform in silico clinical trials (Table 1). We found that when
the cells acquire only one type of drug resistance (either to fulvestrant or
to palbociclib), continuous 100 mg treatment schedules (both 100 daily and
50 mg twice a day) are still significantly more efficient than the standard pulsed
schedule: the continuous treatment schedules led to less than 20% of the pre-

dicted number of tumor cells at the end of 100 days of simulation compared
with the standard pulsed schedule (p < 2.22e −16; Fig. 5C-E; Supplementary
Fig. S11). However, as the cells acquire both fulvestrant and palbociclib resis-
tance, only the 100 mg daily treatment schedule is significantly better than the
standard treatment schedule. The predicted number of tumor cells at the end
of 100 days of simulation using 100 mg daily dosage is 65.15% of the number of
tumor cells predicted from the standard treatment schedule (p= 0.028; Fig. 5F;
Supplementary Fig. S11).

To further identify the key parameters that significantly influence the optimal
treatment schedule, we used a grid search of model parameters to simulate
scenarios inwhich cells develop various levels of palbociclib resistance. This ap-
proach was adopted not only to investigate the dynamics of the resistant MCF7
cell line, but also other cell lines with various characteristics such as differ-
ent G1–S transition rates in the absence of treatment as well as different IC50s
and slopes of the palbociclib response curves. We tested different weights for
those parameters that were inferred from −DOX/+DOXMCF7 cells to deter-
mine the appropriate range and combination of the parameters for simulating
palbociclib resistance. The selection of parameters was deemed reasonable by
comparing the growth of these simulated cells with the growth study of the
palbociclib-resistant MCF7 cell line as a specific example (Supplementary Fig.
S12). We then compared the in silico trial response predictions of these simu-
lated cell lines and found that for almost all cell lines, the continuous treatment
schedules remained more effective than the standard pulsed schedule (Supple-
mentary Fig. S13–S15). The only exception was a cell line with a large increase
of the G1–S TR50s (defined as concentrations leading to a 50% reduction in
the rate of the G1–S transition) in the palbociclib response curve: when the
G1–S TR50 value was inferred from the original palbociclib-sensitive MCF7
cells, the predicted number of tumor cells at the end of the continuous 100
mg treatment schedules was approximately 15% of the predicted number from
the standard pulsed treatment schedule. However, when the G1–S TR50 was
increased to 10 times the inferred value, the predicted number of tumor cells
increased to around 50% of the predicted number from the pulsed treatment
schedule. Finally, when the G1–S TR50 was 100 times the inferred value, this
percentage increased to approximately 95% (see Supplementary Fig. S14 and
Supplementary Table S3). We thus identified the key parameter leading to the
lesser difference between the continuous treatment schedules and the pulsed
schedule as the G1–S TR50s.

To account for changes in tumor heterogeneity, we generalized our in silico
clinical trials to simulate the growth of the tumor using different initial propor-
tions ofWT-ER and ER-mutant cells.We varied the initial condition so that the
ER-mutant population represented 0%, 20%, 50%, 80%, and 100% of the pop-
ulation. This simulation of tumor heterogeneity was repeated for the different
cell lines (Supplementary Fig. S12). In general, we found that as the proportion
of ER-mutant cells in an individual tumor increases, the treatment response
dynamics become closer to the case of 100%+DOX cells, and vice versa. There-
fore, if the optimal treatment schedules are the same for both homogeneous
−DOX and +DOX tumors, then tumor heterogeneity does not change the
conclusion about the efficacy of different treatment schedules. For instance,
in the palbociclib-sensitive MCF7 cell line, continuous treatment schedules
are more effective than the pulsed schedule when tumors are homogeneous,
and we obtained the same conclusion for heterogeneous tumors (Supplemen-
tary Fig. S16). However, if we have different conclusions of optimal schedules
for homogeneous +DOX and −DOX tumors, then the optimal schedule of
a heterogeneous tumor depends on its initial percentage of −DOX cells. For
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FIGURE 5 Prediction of drug responses in palbociclib-resistant cells. For −DOX cells (A) and for +DOX cells (B) are the estimated drug response
curves of the effect of palbociclib on G1–S transition rate. The blue (−DOX) and red (+DOX) curves are given by the estimated model parameter
of the palbociclib-sensitive MCF7 cell line. The green (−DOX) and orange (+DOX) curves are given by the estimated model parameter of the
palbociclib-resistant MCF7 cell line. The gray shaded area corresponds to the 95% credible interval of the posterior predictive values. C–F show the box
plots for the number of cells at day 100 given by the in silico trial predictions of multiple palbociclib treatment administration schedules in combination
with fulvestrant. The p-values were computed using the Wilcoxon test. C and D are −DOX/+DOX cells of the palbociclib-sensitive MCF7 cell line. E and
F are −DOX/+DOX cells of the palbociclib-resistant MCF7 cell line (+PR).

instance, in the palbociclib-resistant cell line, we found that, when the per-
centage of −DOX cells is small, the 100 mg continuous dose schedules are
significantly more effective than the pulsed schedule, similar to the findings in
a homogeneous −DOX tumor. As the percentage of +DOX cells increases, the
difference between the continuous dose schedules and the pulsed schedule be-
comes less pronounced, similar to the findings of homogeneous+DOX tumors
(Supplementary Fig. S16).

Discussion
To study the optimal scheduling of palbociclib in combination with fulvestrant
with the aim of improving patient outcomes with this treatment combination,
we used a cell cycle–explicit model of ER+ breast cancer response to these
drugs, parameterized using in vitro drug synergy and cell-cycle data. Our ap-
proach led to the findings of suggested schedules that administer (i) palbociclib
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50 mg/25 mg twice a day to patients with decreased tolerability or (ii) palboci-
clib 100 mg daily to patients with a large percentage of cells harboring a Y537S
ERmutation and who experience manageable adverse events. Importantly, our
approach may also be applicable to the schedule optimization of combination
treatments with other cell-cycle inhibitors, including ribociclib and abemaci-
clib, the other two CDK4/6i that are FDA approved and are in clinical practice,
as well as novel cell-cycle inhibitors in clinical development such as CDK2,
CDK4 (46), CDK2/4/6 (9), or CDK7 inhibitors (47).

The NeoPalAna clinical trial (48) was a neoadjuvant study in which 50 patients
with early-stage ER+/HER2-negative disease received 4 weeks of treatment
with anastrozole (endocrine therapy) alone followed by four cycles of anastro-
zole in combination with palbociclib. Ki67 suppression based on the rate of
complete cell-cycle arrest was significantly higher after 2 weeks of palbociclib
in combination of anastrozole versus 4 weeks of anastrozole alone. However,
the Ki67 levels in the tumors obtained at the time of surgery from the first
29 patients who completed four cycles of the anastrozole plus palbociclib fol-
lowing a median washout of 29 days (range, 8–49 days) prior to surgery were
significantly higher compared with the on treatment Ki67 levels after 2 weeks
of the combination treatment. The subsequently enrolled patients (N = 8) re-
ceived 10–12 days of palbociclib immediately prior to surgery. In the patients
that were treated with palbocicilib up until surgery, the degree of Ki67 sup-
pression at the time of surgery was comparable to day 15 of the combination
treatment. In addition, serum thymidine kinase activity, a potential surrogate
marker for CDK4/6 inhibition, was also significantly decreased after 2 weeks
of palbociclib and anastrozole in the NeoPalAna trial, but after withdrawal of
palbociclib at the time of surgery there was a significant increase in the level of
serum thymidine kinase activity (49). In line with these clinical observations,
in preclinical experiments with xenografts of MCF7 cells and an ER+ patient-
derived xenograft (PDX) model, when treatment was withdrawn, the tumors
grew back and reached tumor volumes that were approximately 2.3-fold larger
(50). These preclinical findings alignwith our in silicomodeling predictions of a
3-fold change, offering supportive partial validation for ourmodeling approach.
Taken together, these results indicate that continuous therapy is required for
cell-cycle inhibition and tumor suppression.

Early results of a clinical trial testing a continuous dose of palbociclib 100 mg
versus the standard regimen of 125 mg given for 21 days followed by a 7-day
break did not show improvements in PFS (NCT02630693; ref. 43). However,
the continuous dosing of palbociclib 100 mg led to a high rate of grade 3 and
4 neutropenia requiring dose reductions or dose delays in 70% of patients and
limits the evaluation of the benefit with continuous scheduling. The 75mg dose
continuously is likely to be better tolerated and our results provide a rationale
for testing the 75 mg dose given daily in split doses of 50 mg in the morning
and 25 mg in the evening.

Even though our in silico predictions of the optimal treatment schedule suggest
that continuous therapy is more effective than pulsed-dose therapy, these con-
clusions are only partially validated by existing preclinical and clinical trials.
The general applicability of our findings, particularly the effects across various
continuous treatment schedules, remains a limitation of our current work. To
validate our full set of predictions, we propose the design of anER+ PDXmodel,
treated in line with our proposed treatment schedules.

Ourmodel was parameterized using data solely from theMCF7 cell line, which
is a caveat of this study. However, we have expanded the model’s applicability

by conducting a grid search over a range of parameters for drug resistance, con-
firming its relevance to different drug resistancemechanisms, such as resistance
to both fulvestrant and palbociclib. In the future, we intend to apply our com-
putational modeling platform to the in vitro cell-cycle data of other cell lines,
such as the T47D line (16). This approach will enable us to obtain relevant pa-
rameters for the pharmacodynamic models. When merged with our current
pharmacokinetic model and combined with the in silico prediction techniques
from this research, we expect to be able to further optimize treatment schedules
based on a broader array of cell lines.

Furthermore, our model currently includes only one CDK inhibitor, palboci-
clib. For a more comprehensive approach testing other CDK inhibitors, our
framework could be tailored to evaluate other CDK4/6 inhibitors, such as
ribociclib and abemaciclib. To broaden the analysis that we conducted for
palbociclib and incorporate other cell-cycle inhibitors, we would require in
vitro data derived from drug synergy and cell-cycle assays with the other in-
hibitors. With this data, pharmacodynamic parameters can be estimated, and
when combined with pharmacokinetic models obtained from clinical trials
of these drugs, we could perform in silico trial simulations. This could result
in a more inclusive model and would strengthen its applicability, potentially
offering insights into the interaction of different cell-cycle checkpoints with
various CDK inhibitors. As a relevant example, a selective CDK4 inhibitor
(PF-07220060) is currently in clinical development (NCT04557449; ref. 46).
PF-07220060 does not inhibit CDK6, which is the main mediator of neutrope-
nia (51), and this may allow higher doses in a continuous fashion that could
result in better patient outcomes. In addition, inhibitors of CDK7, a cyclin-
activating kinase, CDK2 and CDK2/4/6 inhibitors are in clinical development
in ER+ breast cancer (52). Thus, although we tested one CDK4/6i, we provide
a framework that enables the evaluation of the scheduling of other cell-cycle
inhibitors.

In our study, the 95% credible intervals of the posterior predictions were large.
This issue might be addressed by an alternative experimental design using the
FastFUCCI assay, which may improve both labelling efficiency and expression
rate (higher spatial resolution; ref. 53) and/or alternate modeling strategies. For
instance, in future work we will consider using stochastic processes to model
cell growth directly: with this approach, variations of cell growth become an
intrinsic property determined by the stochastic process and the parameters of
these variations can be approximated by the Central Limit Theorem for mul-
titype branching processes (54). Data from cell-cycle assays can then be used,
together with the estimation tool provided in ref. 54 to determine parameters
of a multistage cell-cycle stochastic model.

Finally, by integrating our simulations for the pharmacodynamics of palbociclib
and fulvestrant (Fig. 3; Table 2), we found that the use of the conventionalmetric
IC50 leads to results that are either significantly underestimated (the sensitiv-
ity of the responses to fulvestrant) or obscured (the synergistic effect). However,
advantages of using IC50s include straightforward computation and the fact that
no prior knowledge of the drug effect is needed. In contrast, although measur-
ing TR-50s is based on the drug effect on inhibiting GRs, the measurement can
lead to some bias if too many constraints are included in the model. There-
fore, we suggest applying both IC50s and TR50s, thus enabling complementary
contributions to a comprehensive view of the pharmacodynamics of drugs that
target cell-cycle checkpoints.
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